震撼!最强开源模型通义千问2.5 72B竟在4GB老显卡上成功运行!

news2025/1/23 1:03:23

炸裂!最强开源模型一夜之间易主。阿里发布千问2.5模型,72B版本在MMLU、MATH、MBPP等大部分评测指标上都超过了Llama3 405B,甚至一些指标也超过了GPT4o。正式加冕最强开源模型新王!

今天要挑战用我的4GB老显卡不做量化、不做压缩,看看能不能跑起来这个72B模型。

在这里插入图片描述

X上边各个国家也都爆发了关于Qwen模型的讨论:

在这里插入图片描述

01

我的4GB老显卡还能用吗?

A100,H100暂时还没有购入,主要的原因是穷。

目前主力显卡是一个4GB的老显卡:

在这里插入图片描述

4GB显卡直接尝试运行时,是这个画风:

在这里插入图片描述

02

72B的千问有多大?

72B的千问用18T个token训练而成,有80层。加载这个模型大概需要37块我这样的4GB显卡。差得不多。还差36块。

在这里插入图片描述

因此需要想一个办法。

在这里插入图片描述

03

分层推理

解决方案就是分层推理,每次只80层中的一层进显存:

在这里插入图片描述

04

开源

代码全部开源到了开源项目AirLLM中,可以在github找到。

除了QWen2.5,AirLLM也支持Llama3 400B,Mixtral等模型。

叠个甲:4GB能跑但是速度肯定不会太快(4GB的卡还要啥自行车啊?)因此不适合chatbot等实时场景,仅适合异步数据处理等场景。

推理过程只需要几行代码:

from airllm import AutoModel

MAX_LENGTH = 128
model = AutoModel.from_pretrained("Qwen/Qwen2.5-72B-Instruct")

input_text = [
        'What is the capital of United States?',
    ]

input_tokens = model.tokenizer(input_text,
    return_tensors="pt", 
    return_attention_mask=False, 
    truncation=True, 
    max_length=MAX_LENGTH, 
    padding=False)

generation_output = model.generate(
    input_tokens['input_ids'].cuda(), 
    max_new_tokens=20,
    use_cache=True,
    return_dict_in_generate=True)

output = model.tokenizer.decode(generation_output.sequences[0])

print(output)

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2164573.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

光伏仿真:排布设计如何优化用户体验?

1、屋顶绘制精准 光伏系统的性能直接受到屋顶结构的影响,因此,屋顶绘制的精准性是光伏仿真设计的首要任务。现代光伏仿真软件通过直观的界面和强大的图形编辑功能,使得用户能够轻松导入或绘制出待安装光伏系统的屋顶形状。无论是平面屋顶、斜…

LLM - 使用 XTuner 指令微调 多模态大语言模型(InternVL2) 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/142528967 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 XTuner…

国庆节到了,扣子智能体coze画板功能实现贺卡编辑智能体自动添加logo和二维码,让海报品牌化

大家好,我是Shelly,一个专注于输出AI工具和科技前沿内容的AI应用教练,体验过300+款以上的AI应用工具。关注科技及大模型领域对社会的影响10年+。关注我一起驾驭AI工具,拥抱AI时代的到来。 自媒体时代,不管是一个人、一个团队还是一家公司,都是一个IP。那么添加品牌的标志…

JavaWeb校园二手交易平台

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 spring-mybatis.xml3.5 spring-mvc.xml3.5 login.jsp 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优…

AI大模型助力数据消费,构建数据飞轮科学、高效的体系

随着互联网的技术高速发展,越来越多的应用层出不穷,伴随着数据应用的需求变多,为快速响应业务需求,很多企业在初期没有很好的规划的情况下,存在不同程度的烟囱式的开发模式,这样会导致企业不同业务线的数据…

Java Map类

欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:Java 目录 👉🏻map1. 常见的实现2. 主要方法2.1. put(K key, V value)2.2. get(Object key)2.3. remove(Object key)2.4. containsKe…

西部移动硬盘怎么恢复数据?4种详细且实用的方法

面对西部移动硬盘数据丢失的问题,用户往往感到焦虑和无助。本文将为您提供一系列详细且实用的数据恢复方法,帮助您轻松应对数据丢失的挑战,重拾宝贵信息。 图片来源于网络,如有侵权请告知 一、西部移动硬盘数据丢失原因 西部移动…

生成式AI在电商场景的应用、前景与挑战,零基础入门到精通,收藏这一篇就够了

编者按 百舸争流的AI时代,“AI”行动在千行百业迅速开展。电商是一个重要场景,**据阿里调研,在电商平台,约30%受访商家已经使用生成式AI,成为生成式AI技术普惠的最佳试验场之一。**目前,已使用生成式AI的商…

828华为云征文|华为云Flexus云服务器X实例之openEuler系统下部署经典扫雷小游戏

828华为云征文|华为云Flexus云服务器X实例之openEuler系统下部署经典扫雷小游戏 前言一、Flexus云服务器X实例介绍1.1 Flexus云服务器X实例简介1.2 Flexus云服务器X实例特点1.3 Flexus云服务器X实例使用场景 二、本次实践介绍2.1 本次实践简介2.2 扫雷小游戏简介2.3…

KPaaS平台用户权限管理系统方案之表单设计统一单据制作与授权

不同的业务系统各自独立运行,需要分别进行授权操作,这不仅繁琐耗时,还容易出现错误和不一致的情况,导致企业在多系统用户权限角色管理中常常陷入困境,那么,有没有一种高效、便捷的解决方案呢? …

关于预处理详解,#define,宏的使用以及命名 函数与宏的区别详细对比

预定义符号 C语⾔设置了⼀些预定义符号,可以直接使⽤,预定义符号也是在预处理期间处理的 __FILE__ //进⾏编译的源⽂件 __LINE__ //⽂件当前的⾏号 __DATE__ //⽂件被编译的⽇期 __TIME__ //⽂件被编译的时间 __STDC__ //如果编译器遵循ANSI C&#xff…

汉诺塔的理解

数学思想——归纳推理(不是反证法) 为了方便,我把塔叫做牌,最左边的是从大到小(底部开始)放置的的牌堆。 数字的那一列是递归调用,右边长度不一的箭头是,数字阶段向下调用方法的情况…

稀土抗菌剂在涂料中应用的神奇表现

稀土抗菌剂的抗菌抑菌机理有四个层面:一是稀土化合物与细菌表面静电结合,造成直接的杀灭二是基于稀土的光催化半导体特性,通过光生氧自由基ROS机理杀灭细菌;三是稀土化合物破坏细胞膜通透性,造成破损导致细胞质流出杀灭细菌;四是稀土离子跨膜…

C标准库<string.h>-str、strn开头的函数

char *strcat(char *dest, const char *src) 函数功能 strcat 函数用于将一个字符串追加到另一个字符串的尾部。 参数解释 dest:指向目标字符串的指针,这个字符串的尾部将被追加 src 字符串的内容。src:指向源字符串的指针,其…

最精简的VScode Verilog RTL开发环境搭建教程

【2024-9月更新】最精简的VScode Verilog RTL开发环境搭建教程 文章目录 【2024-9月更新】最精简的VScode Verilog RTL开发环境搭建教程一、官网下载VScode二、登录账号同步三、安装配置拓展插件1.Verilog-HDL/systemVerilog拓展2.安装Universal Ctags● Windows系统安装univer…

(附源码) Springboot 飞速物流管理平台78584

摘要 受疫情的影响,很多城市处于静默的状态,导致店铺很多店铺都处于关闭的状态,给商家带来了极大的损失,很多商家为了减少损失都通过线上进行销售,比如直播、微商等;同时对于消费者来说,网上购买…

【Redis】分布式锁之 Redission

一、基于setnx实现的分布式锁问题 重入问题:获得锁的线程应能再次进入相同锁的代码块,可重入锁能防止死锁。例如在HashTable中,方法用synchronized修饰,若在一个方法内调用另一个方法,不可重入会导致死锁。而synchroni…

mysql练习题使用的表

dept(部门表):部门编号,部门名字,部门地点 salgrode工资等级表:等级,最高工资,最低工资 emp表:员工编号,员工名字,工作,领导编号MGR,入职时间,工…

Spring Boot 整合MyBatis-Plus 实现多层次树结构的异步加载功能

文章目录 1,前言2,什么是多层次树结构?3,异步加载的意义4,技术选型与实现思路5,具体案例5.1,项目结构5.2,项目配置(pom.xml)5.3,配置文件&#xf…

c++难点核心笔记(二)

系列文章目录 c难点&核心笔记(一) 继续接着上一章记录的重点内容包括函数,类和对象,指针和引用,C对象模型和this指针等内容,继续给大家分享!! 文章目录 系列文章目录友元全局函数做友元类做友元成员函…