鸿蒙OpenHarmony【小型系统基础内核(进程管理任务)】子系统开发

news2024/9/24 22:36:52

任务

基本概念

从系统的角度看,任务Task是竞争系统资源的最小运行单元。任务可以使用或等待CPU、使用内存空间等系统资源,并独立于其它任务运行。

OpenHarmony 内核中使用一个任务表示一个线程。

OpenHarmony 内核中同优先级进程内的任务统一调度、运行。

OpenHarmony 内核中的任务采用抢占式调度机制,同时支持时间片轮转调度和FIFO调度方式。

OpenHarmony 内核的任务一共有32个优先级(0-31),最高优先级为0,最低优先级为31。

当前进程内, 高优先级的任务可抢占低优先级任务,低优先级任务必须在高优先级任务阻塞或结束后才能得到调度。

任务状态说明

  • 初始化(Init):任务正在被创建。

  • 就绪(Ready):任务在就绪列表中,等待CPU调度。

  • 运行(Running):任务正在运行。

  • 阻塞(Blocked):任务被阻塞挂起。Blocked状态包括:pending(因为锁、事件、信号量等阻塞)、suspended(主动pend)、delay(延时阻塞)、pendtime(因为锁、事件、信号量时间等超时等待)。

  • 退出(Exit):任务运行结束,等待父任务回收其控制块资源。

    图1 任务状态迁移示意图

    1

任务状态迁移说明:

  • Init→Ready: 任务创建拿到控制块后为初始化阶段(Init状态),当任务初始化完成将任务插入调度队列,此时任务进入就绪状态。
  • Ready→Running: 任务创建后进入就绪态,发生任务切换时,就绪列表中最高优先级的任务被执行,从而进入运行态,此刻该任务从就绪列表中删除。
  • Running→Blocked: 正在运行的任务发生阻塞(挂起、延时、读信号量等)时,任务状态由运行态变成阻塞态,然后发生任务切换,运行就绪列表中剩余最高优先级任务。
  • Blocked→Ready : 阻塞的任务被恢复后(任务恢复、延时时间超时、读信号量超时或读到信号量等),此时被恢复的任务会被加入就绪列表,从而由阻塞态变成就绪态。
  • Ready→Blocked: 任务也有可能在就绪态时被阻塞(挂起),此时任务状态会由就绪态转变为阻塞态,该任务从就绪列表中删除,不会参与任务调度,直到该任务被恢复。
  • Running→Ready: 有更高优先级任务创建或者恢复后,会发生任务调度,此刻就绪列表中最高优先级任务变为运行态,那么原先运行的任务由运行态变为就绪态,并加入就绪列表中。
  • Running→Exit: 运行中的任务运行结束,任务状态由运行态变为退出态。若为设置了分离属性( 由头文件 los_task.h 中的宏定义 LOS_TASK_STATUS_DETACHED 设置)的任务,运行结束后将直接销毁。

运行机制

OpenHarmony 任务管理模块提供任务创建、任务延时、任务挂起和任务恢复、锁任务调度和解锁任务调度、根据ID查询任务控制块信息功能。

用户创建任务时,系统会将任务栈进行初始化,预置上下文。此外,系统还会将“任务入口函数”地址放在相应位置。这样在任务第一次启动进入运行态时,将会执行任务入口函数。

开发指导

接口说明

表1 任务的创建和删除
接口名接口描述
LOS_TaskCreate创建任务,若所创建任务的优先级比当前的运行的任务优先级高且任务调度没有锁定, 则该任务将被调度进入运行态
LOS_TaskCreateOnly创建任务并阻塞,任务恢复前不会将其加入就绪队列中
LOS_TaskDelete删除指定的任务,回收其任务控制块和任务栈所消耗的资源
表2 任务的状态控制
接口名接口描述
LOS_TaskResume恢复挂起的任务
LOS_TaskSuspend挂起指定的任务,该任务将从就绪任务队列中移除
LOS_TaskJoin阻塞当前任务,等待指定任务运行结束并回收其资源
LOS_TaskDetach修改任务的 joinable 属性为 detach 属性,detach 属性的任务运行结束会自动回收任务控制块资源
LOS_TaskDelay延迟当前任务的执行,在延后指定的时间(tick数)后可以被调度
LOS_TaskYield将当前任务从具有相同优先级的任务队列,移动到就绪任务队列的末尾
表3 任务调度
接口名接口描述
LOS_TaskLock锁定任务调度,阻止任务切换
LOS_TaskUnlock解锁任务调度。通过该接口可以使任务锁数量减1,若任务多次加锁,那么 任务调度在锁数量减为0时才会完全解锁
LOS_GetTaskScheduler获取指定任务的调度策略
LOS_SetTaskScheduler设置指定任务的调度参数,包括优先级和调度策略
LOS_Schedule触发主动的任务调度
表4 任务相关信息获取
接口名接口描述
LOS_CurTaskIDGet获取当前任务的ID
LOS_TaskInfoGet获取指定任务的信息
LOS_GetSystemTaskMaximum获取系统支持的最大任务数
表5 任务优先级
接口名接口描述
LOS_CurTaskPriSet设置当前正在运行的任务的优先级
LOS_TaskPriSet设置指定任务的优先级
LOS_TaskPriGet获取指定任务的优先级
表6 任务绑核操作
接口名接口描述
LOS_TaskCpuAffiSet绑定指定任务到指定CPU上运行,仅在多核下使用
LOS_TaskCpuAffiGet获取指定任务的绑核信息,仅在多核下使用

开发流程

任务的典型开发流程:

  1. 通过LOS_TaskCreate创建一个任务。

    • 指定任务的执行入口函数
    • 指定任务名
    • 指定任务的栈大小
    • 指定任务的优先级
    • 指定任务的属性,LOS_TASK_ATTR_JOINABLE和LOS_TASK_STATUS_DETACHED属性
    • 多核运行时,可以选择设置任务的绑核属性
  2. 任务参与调度运行,执行用户指定的业务代码。

  3. 任务执行结束,如果设置了 LOS_TASK_STATUS_DETACHED 属性,则自动回收任务资源,如果任务设置了 LOS_TASK_ATTR_JOINABLE 属性,则需要调用LOS_TaskJoin 回收任务资源,默认为 LOS_TASK_STATUS_DETACHED 属性。

说明:

  • 内核态具有最高权限,可以操作任意进程内的任务。
  • 用户态进程通过系统调用进入内核态后创建的任务属于KProcess, 不属于当前用户态进程。

编程实例

代码实现如下(该示例代码的测试函数可以加在 kernel /liteos_a/testsuites /kernel /src /osTest.c 中的 TestTaskEntry 中进行测试。):

UINT32 g_taskLoID;
UINT32 g_taskHiID;
#define TSK_PRIOR_HI 4
#define TSK_PRIOR_LO 5
UINT32 ExampleTaskHi(VOID)
{
    UINT32 ret;
    PRINTK("Enter TaskHi Handler.\n");
    /* 延时2个Tick,延时后该任务会挂起,执行剩余任务中最高优先级的任务(g_taskLoID任务) */
    ret = LOS_TaskDelay(2);
    if (ret != LOS_OK) {
        PRINTK("Delay Task Failed.\n");
        return LOS_NOK;
    }
    /* 2个Tick时间到了后,该任务恢复,继续执行 */
    PRINTK("TaskHi LOS_TaskDelay Done.\n");
    /* 挂起自身任务 */
    ret = LOS_TaskSuspend(g_taskHiID);
    if (ret != LOS_OK) {
        PRINTK("Suspend TaskHi Failed.\n");
        return LOS_NOK;
    }
    PRINTK("TaskHi LOS_TaskResume Success.\n");
    return LOS_OK;
}

/* 低优先级任务入口函数 */
UINT32 ExampleTaskLo(VOID)
{
    UINT32 ret;
    PRINTK("Enter TaskLo Handler.\n");
    /* 延时2个Tick,延时后该任务会挂起,执行剩余任务中就高优先级的任务(背景任务) */
    ret = LOS_TaskDelay(2);
    if (ret != LOS_OK) {
        PRINTK("Delay TaskLo Failed.\n");
        return LOS_NOK;
    }
    PRINTK("TaskHi LOS_TaskSuspend Success.\n");
    /* 恢复被挂起的任务g_taskHiID */
    ret = LOS_TaskResume(g_taskHiID);
    if (ret != LOS_OK) {
        PRINTK("Resume TaskHi Failed.\n");
        return LOS_NOK;
    }
    PRINTK("TaskHi LOS_TaskDelete Success.\n");
    return LOS_OK;
}
/* 任务测试入口函数,在里面创建优先级不一样的两个任务 */
UINT32 ExampleTaskCaseEntry(VOID)
{
    UINT32 ret;
    TSK_INIT_PARAM_S initParam = {0};

    /* 锁任务调度 */
    LOS_TaskLock();
    PRINTK("LOS_TaskLock() Success!\n");
    /* 高优先级任务的初始化参数,其资源回收需要其他任务调用 LOS_TaskJoin */
    initParam.pfnTaskEntry = (TSK_ENTRY_FUNC)ExampleTaskHi;
    initParam.usTaskPrio = TSK_PRIOR_HI;
    initParam.pcName = "HIGH_NAME";
    initParam.uwStackSize = LOS_TASK_MIN_STACK_SIZE;
    initParam.uwResved   = LOS_TASK_ATTR_JOINABLE;

    /* 创建高优先级任务,由于锁任务调度,任务创建成功后不会马上执行 */
    ret = LOS_TaskCreate(&g_taskHiID, &initParam);
    if (ret != LOS_OK) {
        LOS_TaskUnlock();
        PRINTK("ExampleTaskHi create Failed! ret=%d\n", ret);
        return LOS_NOK;
    }
    PRINTK("ExampleTaskHi create Success!\n");

    /* 低优先级任务的初始化参数,任务结束后会自行结束销毁 */
    initParam.pfnTaskEntry = (TSK_ENTRY_FUNC)ExampleTaskLo;
    initParam.usTaskPrio = TSK_PRIOR_LO;
    initParam.pcName = "LOW_NAME";
    initParam.uwStackSize = LOS_TASK_MIN_STACK_SIZE;
    initParam.uwResved   = LOS_TASK_STATUS_DETACHED;

    /* 创建低优先级任务,由于锁任务调度,任务创建成功后不会马上执行 */
    ret = LOS_TaskCreate(&g_taskLoID, &initParam);
    if (ret!= LOS_OK) {
        LOS_TaskUnlock();
        PRINTK("ExampleTaskLo create Failed!\n");
        return LOS_NOK;
    }
    PRINTK("ExampleTaskLo create Success!\n");

    /* 解锁任务调度,此时会发生任务调度,执行就绪列表中最高优先级任务 */
    LOS_TaskUnlock();
    ret = LOS_TaskJoin(g_taskHiID, NULL);
    if (ret != LOS_OK) {
        PRINTK("Join ExampleTaskHi Failed!\n");
    } else {
        PRINTK("Join ExampleTaskHi Success!\n");
    }
    while(1){};
    return LOS_OK;
}
c

编译运行得到的结果为:

LOS_TaskLock() Success!
ExampleTaskHi create Success!
ExampleTaskLo create Success!
Enter TaskHi Handler.
Enter TaskLo Handler.
TaskHi LOS_TaskDelay Done.
TaskHi LOS_TaskSuspend Success.
TaskHi LOS_TaskResume Success.
TaskHi LOS_TaskDelete Success.
Join ExampleTaskHi Success!

以上就是本篇文章所带来的鸿蒙开发中一小部分技术讲解;想要学习完整的鸿蒙全栈技术。可以在结尾找我可全部拿到!
下面是鸿蒙的完整学习路线,展示如下:
1

除此之外,根据这个学习鸿蒙全栈学习路线,也附带一整套完整的学习【文档+视频】,内容包含如下

内容包含了:(ArkTS、ArkUI、Stage模型、多端部署、分布式应用开发、音频、视频、WebGL、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、鸿蒙南向开发、鸿蒙项目实战)等技术知识点。帮助大家在学习鸿蒙路上快速成长!

鸿蒙【北向应用开发+南向系统层开发】文档

鸿蒙【基础+实战项目】视频

鸿蒙面经

2

为了避免大家在学习过程中产生更多的时间成本,对比我把以上内容全部放在了↓↓↓想要的可以自拿喔!谢谢大家观看!
3

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2161650.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《数据压缩入门》笔记-Part 1

一篇文章显得略长(超过1w字),本文对应原书序言、前言、第1-5章。 第6-10章请参考Part 2,第11-15章,请参考Part 3。 序言 几点发现: 数据压缩需要花费时间并可能会导致软件变慢;改变数据的组织…

C++第一次练习

题目1 class Solution { public:bool isletter(char s){if(s<z&&s>a)return true;if(s>A&&s<Z)return true;return false;}string reverseOnlyLetters(string s) {if(s.empty()){return s;}int left,right;left0;rights.size()-1;while(left<ri…

最新绿豆影视系统 /反编译版源码/PC+WAP+APP端 /附搭建教程+软件

源码简介&#xff1a; 最新的绿豆影视系统5.1.8&#xff0c;这可是个反编译版的源码哦&#xff01;它不仅支持PC端、WAP端&#xff0c;还有APP端&#xff0c;一应俱全。而且附上了搭建教程和软件&#xff0c;安卓和苹果双端都能用&#xff0c;实用方便&#xff01; 优化内容&…

聆思CSK6大模型开发板上手参考

前面发了很多大模型语音交互相关的技术文章&#xff0c;这篇给大家介绍一下大模型语音交互示例的硬件和上手概况。 硬件概况 聆思CSK6大模型开发板长宽尺寸是99.1x72.1mm&#xff0c; 集成了摄像头、麦克风、扬声器、屏幕、无线模块、TF卡等&#xff0c;可以直接用于大模型语音…

2k1000LA 调试HDMI

问题: 客户需要使用HDMI 接口,1080p 的分辨率。 ---------------------------------------------------------------------------------------------------------------- 这里需要看看 龙芯派的 demo 版 的 硬件上的连接。 硬件上: 官方的demo 板 , dvo1 应该是 HDMI的…

如何选择游戏高防服务器,有什么需要注意的点?

自二十世纪初互联网迅速发展&#xff0c;市场发展瞬息万变&#xff0c;游戏行业也迎来了发展的春天。如今游戏行业已成为互联网行业的支柱&#xff0c;占据市场重要的比重。对于游戏行业的企业来说选择服务器是至为重要的一步&#xff0c;市场上的服务器良莠不济&#xff0c;如…

你的提交信息还在拖后腿?看这里,提升代码质量的绝招!

文章目录 前言一、什么是约定式提交&#xff1f;二、创建新仓库三、将代码推送到远程仓库的步骤1.检查当前远程仓库2.添加代码到暂存区3. 进行约定式提交4. 推送代码到远程仓库5. 完成推送 总结 前言 在当今软件开发领域&#xff0c;Git已经成为最广泛使用的版本控制系统之一。…

SpringMVC简单入门操作

一、创建项目 1、创建Maven项目并导入依赖 <dependencies><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version><scope>test</scope></dependency><!-- https:/…

2024年9月23日---关于MyBatis框架(2)

4.7 不同返回值类型的查询 4.7.1 返回基本数据类型 /**查询student表中的记录个数 */ int selectCount(); <select id"selectCount" resultType"_int">select count(*) from student; </select> 4.7.2 返回引用类型(实体类) /**返回值为实…

LeetCode题练习与总结:二叉树的最近公共祖先--236

一、题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个节点 p、q&#xff0c;最近公共祖先表示为一个节点 x&#xff0c;满足 x 是 p、q 的祖先且 x 的深度尽可能大&#xff08;一个节点也…

【秋招笔试题】多多的平均值

解法&#xff1a;抽掉的两个数字之和为2倍的平均数&#xff0c;那么判断一下2倍的平均数是不是整数。然后在搞一个哈希表存取过的值即可。 package com.sky;import java.util.*;public class Test1 {public static void main(String[] args) {Scanner scanner new Scanner(Sy…

【Linux探索学习】第一弹——Linux的基本指令(上)——开启Linux学习第一篇

前言&#xff1a; 在进入Linux学习之前&#xff0c;我们首先要先做好以下两点&#xff1a;1、已经基本掌握C语言或C&#xff0c;2、已经配置好了Linux的环境&#xff0c;做完以上两点后我们就开始Linux的学习&#xff0c;今天我们首先要学习的就是Linux中最基础的操作&#xff…

毕设基于SSM+Vue3实现设备维修管理系统四:后台框架及基础增删改查功能实现

本章介绍后端基础框架及基础的增删改查功能实现&#xff0c;创建基础的dao、service即controller层相关的基类&#xff0c;并实现基础的增删改查相关功能。 源码下载&#xff1a;点击下载 讲解视频&#xff1a; SMMVUE3实现设备维修管理系统毕设&#xff1a;后端框架搭建及表外…

重塑“万免”电商平台的魅力与潜力

今天&#xff0c;我想与大家深入探讨一个近期在电商领域备受瞩目的新概念——“万免”电商平台。我们将一同剖析其独特的运营模式&#xff0c;挖掘它在私域电商领域的非凡魅力与潜在价值。 一、万免模式的创新解读 万免联盟&#xff0c;一个旨在打破传统电商界限的创新平台&am…

内生性检验与过度识别检验

目录 一、文献综述 二、理论原理 三、实证模型 四、程序代码 一、文献综述 内生性问题在经济学和社会科学研究中一直是一个关键挑战&#xff0c;众多学者致力于寻找有效的方法来解决这一问题并确保研究结果的可靠性。 Angrist 和 Krueger&#xff08;1991&#xff09;在研究…

信用卡存量经营读书笔记

信用卡的各项收益和损失分析表 用杜邦分析法拆利润如下 信用卡要不要烧钱&#xff1f;不要&#xff0c;因为没有网络效应&#xff08;用户量增加带来的优惠比较少&#xff09;和赢家通吃的情况 线上获客的几种方式&#xff1a;引流分成、某个项目的联名信用卡、营业收入分成 …

828华为云征文 | 使用Linux管理面板1Panel管理华为云Flexus云服务器X实例

828华为云征文 | 使用Linux管理面板1Panel管理华为云Flexus云服务器X实例 一、华为云Flexus云服务器X实例介绍1.1 Flexus云服务器X实例简介1.2 Flexus云服务器X实例特点 二、1Panel介绍2.1 1Panel 简介2.2 1Panel 特点 三、本次实践介绍3.1 本次实践简介3.2 本次环境规划 四、购…

【machine learning-17-分类(逻辑回归sigmod)】

分类问题 先说一下什么是分类问题&#xff0c;举个例子&#xff1a; 判定一封邮件是否是垃圾邮件&#xff1b; 判定图片是不是一直猫&#xff1b; 等等 这些问题的答案都是有限的&#xff0c;而不像是线性回归&#xff0c;是存在无限可能的不确定值。 这种问题就是分类问题&am…

分区与分桶

分区 分区字段大小写&#xff1a; 在hive中&#xff0c;分区字段名是不区分大小写的&#xff0c;不过字段值是区分大小写的。我们可以来测试一下 导入数据 load data local inpath /home/hivedata/user1.txt into table part4 partition(year2018,month03,DAy21); load data …

Mysql——初识Mysql

目录 数据库基础 创建数据库 服务器&#xff0c;数据库&#xff0c;表关系 数据逻辑存储 MySQL架构 SQL分类 存储引擎 mysql服务端是一个网络服务器&#xff0c;采用的是TCP协议在应用层 &#xff0c;mysql有自己的协议。 数据库基础 mysql不是数据库&#xff0c;是mysql的…