【machine learning-17-分类(逻辑回归sigmod)】

news2024/11/14 6:48:02

分类问题

先说一下什么是分类问题,举个例子:
判定一封邮件是否是垃圾邮件;
判定图片是不是一直猫;
等等
这些问题的答案都是有限的,而不像是线性回归,是存在无限可能的不确定值。

这种问题就是分类问题,那么线性回归可以解决分类问题么?
答案是可以,但是效果可能不太好

线性回归解决分类问题的弊端

在这里插入图片描述

比如上面是检测肿瘤是否良性的一个数据集,有蓝色和红色这两种数据,分别表示不同的结果,是或者不是(0或者1标识),如果线性回归来拟合这个数据的话,可能用图中那条蓝色直线来表示,然后我们定一个阈值,比如y轴0.5以上的就表示非良性,那么这时候x轴位置的点就表示临界点了。输入在X左边的为0,否则为1。现在看起来是没问题的。但是如果数据集增加一个下图中的数据呢?

在这里插入图片描述
那样拟合的直线就应该像图中绿色这条线,这时候如果阈值还是0.5,然后就会发现水平轴的临界值就变了,这时候这条直线x轴这个临界点左边这两个红色数据跟右边的两个红色数据已经不是同一种类了。
显然这个结果不是我们想要的。

怎么解决这个问题,就是逻辑回归,虽然也是回归,但其实跟线性回归没关系,不要误解,这其实是一个二分类算法。

sigmod 逻辑回归

sigmod 函数如下:
在这里插入图片描述
它的函数图像如下
在这里插入图片描述
注意观察下,这个函数值总是在0和1之间,正好与二分类的算法要求输出0和1的结果相对应,二分类的算法是在线性回归基础上再加上一个sigmode,如下:

sigmod(f(x))

在这里插入图片描述
至于深层次的详细解读会在下一节中介绍

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2161617.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

分区与分桶

分区 分区字段大小写: 在hive中,分区字段名是不区分大小写的,不过字段值是区分大小写的。我们可以来测试一下 导入数据 load data local inpath /home/hivedata/user1.txt into table part4 partition(year2018,month03,DAy21); load data …

Mysql——初识Mysql

目录 数据库基础 创建数据库 服务器,数据库,表关系 数据逻辑存储 MySQL架构 SQL分类 存储引擎 mysql服务端是一个网络服务器,采用的是TCP协议在应用层 ,mysql有自己的协议。 数据库基础 mysql不是数据库,是mysql的…

18.1 k8s服务组件之4大黄金指标讲解

本节重点介绍 : 监控4大黄金指标 Latency:延时Utilization:使用率Saturation:饱和度Errors:错误数或错误率 apiserver指标 400、500错误qps访问延迟队列深度 etcd指标kube-scheduler和kube-controller-manager 监控4大黄金指标 …

从手动测试菜鸟,到自动化测试老司机,实现自动化落地

虽然许多伙伴是一个测试老人了,但是基本上所有的测试经验都停留在手工测试方面,对于自动化测试方面的实战经验少之又少。 其实,究其原因:一方面是,自动化方面不求上进,觉得会手工测试就可以了,自…

【计算机基础】用bat命令将Unity导出PC包转成单个exe可执行文件

Unity打包成exe可执行文件 上边连接是很久以前用过的方法,发现操作有些不一样了,并且如果按上述操作比较麻烦,所以写了个bat命令。 图1、导出的pc程序 如图1是导出的pc程序,点击exe文件可运行该程序。 添加pack_project.bat文件 …

基于 SpringBoot 的在线考试系统

专业团队,咨询就送开题报告,欢迎大家私信留言,联系方式在文章底部 摘 要 网络的广泛应用给生活带来了十分的便利。所以把在线考试管理与现在网络相结合,利用java技术建设在线考试系统,实现在线考试的信息化管理。则对…

PX4固定翼控制器详解(五)——L1、NPFG控制器

之前已经讲解了TECS高度与速度控制器,今天是PX4固定翼控制器系列讲解的最后一期,主题是PX4的位置控制器。PX4 1.12及其之前的版本,使用的位置控制器为L1控制器。1.13及其之后的版本,PX4更新了NPFG控制器。NPFG控制器在较强风速下有…

活动目录安全

活动目录安全 1.概述2.常见攻击方式SYSVOL与GPP漏洞MS14-068漏洞Kerberoast攻击内网横移抓取管理员凭证内网钓鱼与欺骗用户密码猜解获取AD数据库文件 3.权限维持手段krbtgt账号与黄金票据服务账号与白银票据利用DSRM账号利用SID History属性利用组策略利用AdminSDHolder利用SSP…

宠物空气净化器去浮毛哪家强?希喂、美的和米家实测分享

要说养宠物后里最让我感到幸福感飙升的家电,必须是宠物空气净化器,没有之一。很多人都喜欢宠物,但应该没有人喜欢清扫,特别是家里宠物多,或者一群宠物在自己家聚在一起之后,要疯狂清除浮毛,真的…

剖解相交链表

相交链表 思路:我们计算A和B链表的长度,求出他们的差值(len),让链表长的先多走len步,最后在A,B链表一起向后走,即可相逢于相交节点 实现代码如下: public class Solution {public …

单链表进阶

之前已经介绍过单链表及其一些简单的功能 这次来简单介绍单链表一些的其他接口 1.在指定位置之前插入数据 具体原码,三个参数,phead是链表的指针,pos是节点的地址,x是需要插入的数据。 pos不能为空指针,因为pos为空…

React启动时 Error: error:0308010C:digital envelope routines::unsupported

错误信息: 错误原因:通常与 Node.js 的新版本中 OpenSSL 的默认行为变化有关。从 Node.js 17 开始,OpenSSL 默认启用了 OpenSSL 3.0 的一些新特性,这可能会影响到一些旧的或未更新的库。 解决办法:可以通过设置环境变…

基于STM32设计的室内育苗环境管理系统(物联网)

文章目录 一、前言1.1 项目介绍【1】项目开发背景【2】设计实现的功能【3】项目硬件模块组成 1.2 设计思路1.3 系统功能总结1.4 开发工具的选择【1】设备端开发【2】上位机开发 1.5 模块的技术详情介绍【1】ESP8266-WIFI模块【2】MQ135传感器【4】DHT11传感器【5】B1750传感器 …

【Diffusion分割】FDiff-Fusion:基于模糊学习的去噪扩散融合网络

FDiff-Fusion: Denoising diffusion fusion network based on fuzzy learning for 3D medical image segmentation 摘要: 近年来,去噪扩散模型在图像分割建模中取得了令人瞩目的成就。凭借其强大的非线性建模能力和优越的泛化性能,去噪扩散模…

Flexus X实例全方位指南:智能迁移、跨云搬迁加速与虚机热变配能力的最佳实践

目录 前言 一、云迁移关键挑战 1、企业实例选型关键挑战 2、云算力关键挑战之一 3、云算力关键挑战之二 二、本地IT及其他云搬迁到Flexus X实例上的独有优势 1、Flexus X实例超强性能,遥遥领先同规格友商实例 (1)底层多重调优&#x…

网络编程——TCP网络通信

通信步骤: 1、连接 2、传输数据 3、关闭连接服务端的创建流程: 1、创建服务端socket对象 socket_family:网络地址类型AF_INET--代表的是ipv4地址类型 socket_type:套接字类型SOCK_STREAM--代表的是tcp套接字SOCK_DGRAM--代表的是udp套接字 2、绑定自己的…

新房安装了约克VRF中央空调真的是明智的选择!

夏天越来越热,新房安装了中央空调真的是太明智了!当初装修时,考虑到家里空间大,我就决定装一个中央空调。对比了好多品牌后,朋友推荐了约克VRF中央空调。装好以后,简直惊喜不断!      强效除…

基于SpringBoot+Vue+MySQL的美食点餐管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 在数字化快速发展的今天,餐饮行业也迎来了转型升级的重要机遇。传统餐饮管理方式面临效率低下、顾客体验不佳等问题。为此,开发一款基于SpringBootVueMySQL架构的美食点餐管理系统显得尤为重要。该系统旨…

【Qualcomm】高通SNPE框架简介、下载与使用

目录 一 高通SNPE框架 1 SNPE简介 2 QNN与SNPE 3 Capabilities 4 工作流程 二 SNPE的安装与使用 1 下载 2 Setup 3 SNPE的使用概述 一 高通SNPE框架 1 SNPE简介 SNPE(Snapdragon Neural Processing Engine),是高通公司推出的面向移…

Leetcode尊享面试100题-252.会议室

给定一个会议时间安排的数组 intervals ,每个会议时间都会包括开始和结束的时间 intervals[i] [starti, endi] ,请你判断一个人是否能够参加这里面的全部会议。 示例 1: 输入:intervals [[0,30],[5,10],[15,20]] 输出&#xff…