【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

news2024/11/15 11:52:08

目录

一、引言 

二、文生文(text2text-generation)

2.1 概述

2.2 Flan-T5: One Model for ALL Tasks

2.3 pipeline参数

2.3.1 pipeline对象实例化参数

2.3.2 pipeline对象使用参数 ​​​​​​​

2.3.3 pipeline返回参数 ​​​​​​​​​​​​​​

2.4 pipeline实战

2.5 模型排名

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍NLP自然语言处理的第七篇:文生文(text2text-generation),在huggingface库内有3.3万个文本生成(text-generation)模型。

二、文生文(text2text-generation)

2.1 概述

文本生成(Text Generation)和文生文(Text-to-Text)两者都是自然语言处理(NLP)的子领域,但它们有不同的重点和应用场景。文本生成主要指的是自动生成文本内容的技术,例如:自动生成新闻报道、自动生成产品描述、自动生成聊天机器人的对话,这种技术通常使用深度学习模型来训练语言模型,从而能够根据输入的条件或提示生成新的文本内容。文生文则主要指的是将一段文本转换为另一段文本的技术,例如:机器翻译、文本摘要、风格转换,这种技术通常使用序列到序列(Seq2Seq)模型或变换器(Transformer)模型来训练语言模型,从而能够根据输入的文本生成新的文本内容。文本生成主要关注于自动生成文本内容,而文生文则主要关注于将一段文本转换为另一段文本。

2.2 Flan-T5: One Model for ALL Tasks

Flan-T5是Google最新的一篇工作,通过在超大规模的任务上对T5进行微调,让语言模型具备了极强的泛化性能,做到单个模型就可以在1800多个NLP任务上都能有很好的表现。这意味着模型一旦训练完毕,可以直接在几乎全部的NLP任务上直接使用,实现One model for ALL tasks,这就非常有诱惑力!

这里的Flan 指的是(Instruction finetuning ),即"基于指令的微调";T5是2019年Google发布的一个语言模型了。注意这里的语言模型可以进行任意的替换(需要有Decoder部分,所以不包括BERT这类纯Encoder语言模型),论文的核心贡献是提出一套多任务的微调方案(Flan),来极大提升语言模型的泛化性。

2.3 pipeline参数

2.3.1 pipeline对象实例化参数

  • model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
  • tokenizer ( PreTrainedTokenizer ) — 管道将使用 tokenizer 来为模型编码数据。此对象继承自 PreTrainedTokenizer。
  • modelcardstrModelCard可选)— 属于此管道模型的模型卡。
  • frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。
  • taskstr,默认为"")— 管道的任务标识符。
  • num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。
  • batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。
  • args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
  • deviceint可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestr
  • torch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"
  • binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。

2.3.2 pipeline对象使用参数 ​​​​​​​

  • text_inputsstrList[str],List[Dict[str, str]],或List[List[Dict[str, str]]])— 需要完成的一个或多个提示(或一个提示列表)。如果传递了字符串或字符串列表,则此管道将继续每个提示。或者,可以传递“聊天”(以带有“role”和“content”键的字典列表的形式),或传递此类聊天的列表。传递聊天时,将使用模型的聊天模板对其进行格式化,然后再将其传递给模型。
  • return_tensors ( bool可选,默认为False) — 是否在输出中返回预测的张量(作为标记索引)。如果设置为 True,则不返回解码后的文本。
  • return_textbool可选,默认为True)— 是否在输出中返回解码后的文本。
  • return_full_textbool可选,默认为True)— 如果设置为,False则仅返回添加的文本,否则返回全文。仅当 return_text设置为 True 时才有意义。
  • clean_up_tokenization_spacesbool可选,默认为True)—是否清理文本输出中可能出现的额外空格。
  • prefixstr可选)— 添加到提示的前缀。
  • handle_long_generationstr可选)— 默认情况下,此管道不处理长生成(以某种形式超出模型最大长度的生成)。
  • generate_kwargsdict可选)——传递给模型的生成方法的附加关键字参数(请参阅此处与您的框架相对应的生成方法)。

2.3.3 pipeline返回参数 ​​​​​​​​​​​​​​

  • argsstrList[str])——编码器的输入文本。
  • return_tensorsbool可选,默认为False)— 是否在输出中包含预测张量(作为标记索引)。
  • return_textbool可选,默认为True)— 是否在输出中包含解码后的文本。
  • clean_up_tokenization_spacesbool可选,默认为False)—是否清理文本输出中可能出现的额外空格。
  • truncationTruncationStrategy可选,默认为TruncationStrategy.DO_NOT_TRUNCATE)——管道内标记化的截断策略。 (默认)永远不会截断,但有时需要截断输入以适合模型的 max_length,而不是在行中抛出错误。generate_kwargs——传递给模型的生成方法的附加关键字参数

2.4 pipeline实战

基于pipeline的text2text-generation任务,使用google/flan-t5-small模型:

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"

from transformers import pipeline

generator = pipeline(task="text2text-generation",model= "google/flan-t5-small" )
output=generator( "Translate to German:  My name is Arthur")
print(output)

执行后,自动下载模型文件并进行识别:

2.5 模型排名

在huggingface上,我们将文生文(text2text-generation)模型按下载量从高到低排序,总计3.2万个模型,google的byt5、t5-v1_1、flan-t5-base在榜。

三、总结

本文对transformers之pipeline的文生文(text2text-generation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的文生文(text2text-generation)模型。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)​​​​​​​

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)​​​​​​​

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)​​​​​​​

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2158293.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言 fwirte 函数 - C语言零基础入门教程

目录 一.fwirte 函数简介二.fwirte 函数使用三.猜你喜欢 零基础 C/C 学习路线推荐 : C/C 学习目录 >> C 语言基础入门 一.fwirte 函数简介 C 语言文件读写,fread 函数用于读取文件中的数据到指定缓冲区中,而 fwrite 函数用于把缓冲区数据写入到文件…

【Redis技能熟练掌握之十年内功】

Redis技能熟练掌握之十年内功 1.redis是什么?为什么要使用redis?2.redis一般应用于什么场景(四个场景)?3. Redis持久化机制是什么?各自的优缺点?一般咋么用?4. redis五个基础类型支持…

Microsoft Edge WebView2运行时安装包获取

目前越来越多的软件将WebView2当做运行时,发现一些精简版的系统精简掉了WebView2或者人为误删除,一些软件无法正常运行,我们可以重新安装即可 浏览器访问WebView2官方页面 https://developer.microsoft.com/zh-cn/microsoft-edge/webview2/ …

kafka负载均衡迁移(通过kafka eagle)

在grafana监控中发现kafka的各个节点磁盘不均匀 出现这样的情况是因为kafka默认是以文件数作为平衡的条件的。换句话说,kafka不会管一个副本有多大,只会看磁盘中有多少个副本文件。 解决方式: 1、修改策略,改为按照磁盘大小平衡…

计算机毕设设计推荐-基于python+Djanog大数据的电影数据可视化分析

精彩专栏推荐订阅:在下方主页👇🏻👇🏻👇🏻👇🏻 💖🔥作者主页:计算机毕设木哥🔥 💖 文章目录 一、电影数据可视…

数控机床中的滚柱导轨什么情况下需要重新更换?

滚柱导轨是数控机床中重要的传动零部件,主要用于支撑和引导运动部件的直线运动,它的故障通常会导致加工精度下降、噪音大、导轨摩擦不顺畅等问题。那么,我们应该如何确定滚柱导轨是否需要更换呢? 1、‌外观检查‌:首先…

第二证券:“产业+科技” 中国并购重组市场持续升温

A股商场正在进入新一轮并购重组周期。新“国九条”出台以来,多项关于并购重组商场的方针接连推出,方针环境不断优化,相关事例数量较去年同期显着增加。从具体事例来看,工业链整合成为本年并购商场的重要“主线”,以“硬…

QT菜单之快捷菜单设计

快捷菜单又称为上下文菜单,通常在用鼠标右击的时候弹出。创建快捷菜单的方法和创建菜单栏菜单类似。 效果图: 一、将MainWindow类对象的ContextMenuPolicy属性设置为customContextMenu。 打开mainWindow.ui,在属性视图上找到ContextMenuPoli…

ubuntu、linux安装redis(使用tar包的方式)

目录 1、准备redis的tar包 2、执行make 3、执行make install 4、运行redis 5、总结 1、准备redis的tar包 去官网或者github上下载对应的tar包,我下载的是 redis-6.2.14.tar.gz 上传到ubuntu后,使用指令进行解压: tar -xvf redis-6.2.14.t…

内卷时代企业数字化营销策略

当前,内循环经济为主的后疫情时代消费心理的变化表现如下: 1. 焦虑与压力感增加 内卷时代的竞争压力和不确定性给消费者带来了焦虑和压力感。他们在消费过程中,不仅关注产品的功能和价值,还希望通过消费来缓解压力、获得心理上的…

S2-057远程执⾏代码漏洞

启动环境 vulhub靶场 /struts2/s2-057 访问 http://172.16.1.45:8080/struts2-showcase http://172.16.1.45:8080/struts2-showcase/${(123123)}/register2.action http://172.16.1.137:8080/struts2-showcase/$%7B%0A%28%23dm%3Dognl.OgnlContextDEFAULT_MEMBER_ACCESS%29.%28…

地图(高德)判断某一点位是否位于某一城市/区域/地区/行政区划内

地图(高德)判断某一点位是否位于某一城市/地区/行政区划内 这里以高德地图示例,其他地图思路是类似的 调用API(可以申请api选择web服务获取key) https://restapi.amap.com/v3/config/district?keyyourAppKey&keywords330500&exte…

罗德岛战记游戏源码(客户端+服务端+数据库+全套源码)游戏大小9.41G

罗德岛战记游戏源码(客户端服务端数据库全套源码)游戏大小9.41G 下载地址: 通过网盘分享的文件:【源码】罗德岛战记游戏源码(客户端服务端数据库全套源码)游戏大小9.41G 链接: https://pan.baidu.com/s/1y0…

RustDesk自建服务器,实现手机控制手机,电脑远程控制,手机控制电脑,电脑控制手机,实现任意互相操作

RustDesk自建服务器,实现手机控制手机,电脑远程控制,手机控制电脑,电脑控制手机,可以互相操作。 如果你不想搭建服务器,也可以联系我,共享服务器给你。 自己搭建服务器很简单,一年…

【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现

题目 【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析 【BetterBench博士】2024年中国研究生数学建模竞赛 E题:高速公路应急车道紧急启用模型 问题分析 【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动…

有了BIO为啥还需要NIO

写在前面 注意:这里的NIO指的是Java nio技术。 源码 。 本文看下NIO相关内容。NIO太重要了,netty,tomcat,jetty等底层使用的都是Java nio,所以很有必要好好了解一下咯,涨薪不涨薪的咱不知道,至少…

【网络安全】网络基础第一阶段——第二节:网络协议基础---- 路由和ARP协议

本篇文章我们来介绍IP路由的基本概念,包括路由的原理、静态路由和动态路由的配置与特点。 目录 一、路由 1.1 IP路由原理、静态路由及动态路由区分 1.1.1 什么是路由 1.1.2 路由的原理 1.1.2 路由表 1.1.3 静态路由与动态路由 1.2 路由原理详解 1.2.1 路由的…

Python增强办公效率的11个实用代码段

如果你正在学习Python,那么你需要的话可以,点击这里👉Python重磅福利:入门&进阶全套学习资料、电子书、软件包、项目源码等等免费分享! 引言 在日常工作中,许多任务可以通过编程自动化来提高效率。本…

QT6.7创建Non-Qt Project工程

QT6.7创建Non-Qt Project工程

数据结构——“二叉搜索树”

二叉搜索树是一个很重要的数据结构,它的特殊结构可以在很短的时间复杂度找到我们想要的数据。最坏情况下的时间复杂度是O(n),最好是O(logn)。接下来看一看它的接口函数的实现。 为了使用方便,这里采用模版的方式: 一、节点 temp…