Java之线程篇六

news2024/9/23 9:42:09

目录

CAS 

CAS伪代码

CAS的应用

实现原子类 

实现自旋锁

CAS的ABA问题

ABA问题导致BUG的例子 

相关面试题

synchronized原理

synchronized特性 

加锁过程

相关面试题

Callable

相关面试题

JUC的常见类

ReentrantLock

ReentrantLock 和 synchronized 的区别:

原子类

信号量

相关面试题


CAS 

CAS: 全称Compare and swap,字面意思:”比较并交换“,一个 CAS 涉及到以下操作:

我们假设内存中的原数据V,旧的预期值A,需要修改的新值B。
1. 比较 A 与 V 是否相等。(比较)
2. 如果比较相等,将 B 写入 V。(交换)
3. 返回操作是否成功。

CAS伪代码
下面写的代码不是原子的 , 真实的 CAS 是一个原子的硬件指令完成的 . 这个伪代码只是辅助理解
CAS 的工作流程。
boolean CAS(address, expectValue, swapValue) {
   if (&address == expectedValue) {
       &address = swapValue;
       return true;
   }
   return false;
}

CAS其实是一个cpu指令,单个的cpu指令,是原子的!!!

就可以使用CAS完成一些操作,进一步代替“加锁”;

基于CAS实现线程安全的方式也称为“无锁化编程”。

优点:保证线程安全,同时避免阻塞,影响效率;

缺点:代码会变复杂,不好理解;只能够适用特定场景,不如加锁方式更普遍。

CAS的应用
实现原子类 

标准库中提供了 java.util.concurrent.atomic 包, 里面的类都是基于这种方式来实现的. 
典型的就是 AtomicInteger 类. 其中的 getAndIncrement 相当于 i++ 操作.

伪代码实现

class AtomicInteger {
    private int value;
    public int getAndIncrement() {
        int oldValue = value;
        while ( CAS(value, oldValue, oldValue+1) != true) {
            oldValue = value;
       }
        return oldValue;
   }
}
实现自旋锁

伪代码实现

public class SpinLock {
    private Thread owner = null;
    public void lock(){
        // 通过 CAS 看当前锁是否被某个线程持有. 
        // 如果这个锁已经被别的线程持有, 那么就自旋等待. 
        // 如果这个锁没有被别的线程持有, 那么就把 owner 设为当前尝试加锁的线程. 
        while(!CAS(this.owner, null, Thread.currentThread())){
       }
   }
    public void unlock (){
        this.owner = null;
   }
}
CAS的ABA问题

ABA问题即:

假设有两个线程t1和t2,有一个共享变量num,初值为A,接下来t1想使用CAS把num改为Z,那么就需要先读取num的值,记录到oldNum变量中,然后使用CAS判断当前num的值是否为A,如果为A,则改为Z。

但是在t1执行上述操作之前,t2线程可能把num的值从A改为B,又从B改为A。

那么此时,线程t1无法区分当前这个变量始终是A,还是经历了一个变化过程。

ABA问题导致BUG的例子 

假设你要去ATM取款机取钱,余额有1000,要取款500,但是取款的时候ATM机卡了一下,所以你按了两下,假设ATM取款机按CAS方式工作,虽然你按了两次,但是你取出的是500,不过,如果恰巧这个时候有人给你转了500,这个时候,你按的第2下取款,使用CAS方式会发现余额还是1000,那么此时就会余额没有改变,你最后会取出1000.

解决方法:引入版本号等方式

给要修改的值, 引入版本号. 在 CAS 比较数据当前值和旧值的同时, 也要比较版本号是否符合预期. 
CAS 操作在读取旧值的同时, 也要读取版本号. 
真正修改的时候, 
如果当前版本号和读到的版本号相同, 则修改数据, 并把版本号 + 1.
如果当前版本号高于读到的版本号. 就操作失败(认为数据已经被修改过了).

相关面试题
1) 讲解下你自己理解的 CAS 机制
全称 Compare and swap, 即 "比较并交换". 相当于通过一个原子的操作, 同时完成 "读取内存, 比较是否相等, 修改内存" 这三个步骤. 本质上需要 CPU 指令的支撑

2) ABA问题怎么解决?

给要修改的数据引入版本号. 在 CAS 比较数据当前值和旧值的同时, 也要比较版本号是否符合预期. 
如果发现当前版本号和之前读到的版本号一致, 就真正执行修改操作, 并让版本号自增; 如果发现当前版本号比之前读到的版本号大, 就认为操作失败.

synchronized原理
synchronized特性 

1. 开始时是乐观锁, 如果锁冲突频繁, 就转换为悲观锁.
2. 开始是轻量级锁实现, 如果锁被持有的时间较长, 就转换成重量级锁. 
3. 实现轻量级锁的时候大概率用到的自旋锁策略
4. 是一种不公平锁
5. 是一种可重入锁
6. 不是读写锁

加锁过程

JVM 将 synchronized 锁分为 无锁、偏向锁、轻量级锁、重量级锁 状态。会根据情况,进行依次升级。 

1)偏向锁

第一个尝试加锁的线程, 优先进入偏向锁状态. 
偏向锁不是真的 "加锁", 只是给对象头中做一个 "偏向锁的标记", 记录这个锁属于哪个线程. 
如果后续没有其他线程来竞争该锁, 那么就不用进行其他同步操作了(避免了加锁解锁的开销)
如果后续有其他线程来竞争该锁(刚才已经在锁对象中记录了当前锁属于哪个线程了, 很容易识别当前申请锁的线程是不是之前记录的线程), 那就取消原来的偏向锁状态, 进入一般的轻量级锁状态. 
偏向锁本质上相当于 "延迟加锁" . 能不加锁就不加锁, 尽量来避免不必要的加锁开销. 
但是该做的标记还是得做的, 否则无法区分何时需要真正加锁.

2)轻量级锁

随着其他线程进入竞争, 偏向锁状态被消除, 进入轻量级锁状态(自适应的自旋锁). 
此处的轻量级锁就是通过 CAS 来实现.

通过 CAS 检查并更新一块内存 (比如 null => 该线程引用)
如果更新成功, 则认为加锁成功
如果更新失败, 则认为锁被占用, 继续自旋式的等待(并不放弃 CPU). 

3)重量级锁

如果竞争进一步激烈, 自旋不能快速获取到锁状态, 就会膨胀为重量级锁
此处的重量级锁就是指用到内核提供的 mutex . 
执行加锁操作, 先进入内核态. 
在内核态判定当前锁是否已经被占用
如果该锁没有占用, 则加锁成功, 并切换回用户态. 
如果该锁被占用, 则加锁失败. 此时线程进入锁的等待队列, 挂起. 等待被操作系统唤醒. 
经历了一系列的沧海桑田, 这个锁被其他线程释放了, 操作系统也想起了这个挂起的线程, 于是唤醒这个线程, 尝试重新获取锁. 

锁消除

编译器+JVM 判断锁是否可消除. 如果可以, 就直接消除。

例如:单线程环境下。 

锁粗化

一段逻辑中如果出现多次加锁解锁, 编译器 + JVM 会自动进行锁的粗化.  

相关面试题

1)什么是偏向锁?

偏向锁不是真的加锁 , 而只是在锁的对象头中记录一个标记 ( 记录该锁所属的线程 ). 如果没有其他线程参与竞争锁, 那么就不会真正执行加锁操作 , 从而降低程序开销 . 一旦真的涉及到其他的线程竞争, 再取消偏向锁状态 , 进入轻量级锁状态 .
Callable

Callable 和 Runnable 相对, 都是描述一个 "任务". Callable 描述的是带有返回值的任务, 
Runnable 描述的是不带返回值的任务. 
Callable 通常需要搭配 FutureTask 来使用. FutureTask 用来保存 Callable 的返回结果. 因为
Callable 往往是在另一个线程中执行的, 啥时候执行完并不确定. 
FutureTask 就可以负责这个等待结果出来的工作 

理解FutureTask

想象去吃麻辣烫 . 当餐点好后 , 后厨就开始做了 . 同时前台会给你一张 " 小票 " . 这个小票就是
FutureTask. 后面我们可以随时凭这张小票去查看自己的这份麻辣烫做出来了没 .
代码示例
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;

public class Demo30 {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        // 定义了任务.
        Callable<Integer> callable = new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                int sum = 0;
                for (int i = 0; i <= 1000; i++) {
                    sum += i;
                }
                return sum;
            }
        };
        // 把任务放到线程中进行执行.
        FutureTask<Integer> futureTask = new FutureTask<>(callable);
        Thread t = new Thread(futureTask);
        t.start();

        // 此处的 get 就能获取到 callable 里面的返回结果.
        // 由于线程是并发执行的. 执行到主线程的 get 的时候, t 线程可能还没执行完.
        // 没执行完的话, get 就会阻塞.
        System.out.println(futureTask.get());
    }
}
相关面试题

介绍一下Callable是什么

Callable 是一个 interface . 相当于把线程封装了一个 "返回值". 方便程序猿借助多线程的方式计算结果. 
Callable 和 Runnable 相对, 都是描述一个 "任务". Callable 描述的是带有返回值的任务, 
Runnable 描述的是不带返回值的任务.
Callable 通常需要搭配 FutureTask 来使用. FutureTask 用来保存 Callable 的返回结果. 因为
Callable 往往是在另一个线程中执行的, 啥时候执行完并不确定. 
FutureTask 就可以负责这个等待结果出来的工作.

JUC的常见类

JUC,是java.util.concurrent的缩写。

ReentrantLock

可重入互斥锁. 和 synchronized 定位类似, 都是用来实现互斥效果, 保证线程安全. 
ReentrantLock 也是可重入锁. "Reentrant" 这个单词的原意就是 "可重入".

ReentrantLock的用法

lock(): 加锁, 如果获取不到锁就死等. 
trylock(超时时间): 加锁, 如果获取不到锁, 等待一定的时间之后就放弃加锁. 
unlock(): 解锁

ReentrantLock 和 synchronized 的区别:

synchronized 是一个关键字, 是 JVM 内部实现的(大概率是基于 C++ 实现). ReentrantLock 是标准库的一个类, 在 JVM 外实现的(基于 Java 实现). 
synchronized 使用时不需要手动释放锁. ReentrantLock 使用时需要手动释放. 使用起来更灵活, 但是也容易遗漏 unlock. 
synchronized 在申请锁失败时, 会死等. ReentrantLock 可以通过 trylock 的方式等待一段时间就放弃. 
synchronized 是非公平锁, ReentrantLock 默认是非公平锁. 可以通过构造方法传入一个 true 开启公平锁模式. 

更强大的唤醒机制. synchronized 是通过 Object 的 wait / notify 实现等待-唤醒. 每次唤醒的是一个随机等待的线程. ReentrantLock 搭配 Condition 类实现等待-唤醒, 可以更精确控制唤醒某个指定的线程.

// ReentrantLock 的构造方法
public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

 如何选择使用哪个锁?

锁竞争不激烈的时候, 使用 synchronized, 效率更高, 自动释放更方便. 
锁竞争激烈的时候, 使用 ReentrantLock, 搭配 trylock 更灵活控制加锁的行为, 而不是死等. 
如果需要使用公平锁, 使用 ReentrantLock.

原子类

原子类内部用的是 CAS 实现,所以性能要比加锁实现 i++ 高很多。原子类有以下几个
AtomicBoolean
AtomicInteger
AtomicIntegerArray
AtomicLong
AtomicReference
AtomicStampedReference 

ExecutorService和Executors

ExecutorService 表示一个线程池实例. 
Executors 是一个工厂类, 能够创建出几种不同风格的线程池. 
ExecutorService 的 submit 方法能够向线程池中提交若干个任务. 

代码示例

ExecutorService pool = Executors.newFixedThreadPool(10);
pool.submit(new Runnable() {
    @Override
    public void run() {
        System.out.println("hello");
   }
});

Executors 创建线程池的几种方式:

newFixedThreadPool: 创建固定线程数的线程池
newCachedThreadPool: 创建线程数目动态增长的线程池.
newSingleThreadExecutor: 创建只包含单个线程的线程池. 
newScheduledThreadPool: 设定 延迟时间后执行命令,或者定期执行命令. 是进阶版的 Timer. 

Executors 本质上是 ThreadPoolExecutor 类的封装. 

信号量

信号量(Semaphore), 用来表示 "可用资源的个数". 本质上就是一个计数器.
Semaphore 的 PV 操作中的加减计数器操作都是原子的, 可以在多线程环境下直接使用. 

acquire 方法表示申请资源 (P 操作 ), release 方法表示释放资源 (V 操作 )

 代码示例

import java.util.concurrent.Semaphore;

public class Demo24 {
    public static void main(String[] args) throws InterruptedException {
        Semaphore semaphore = new Semaphore(4);
        semaphore.acquire();
        System.out.println("P 操作");
        semaphore.acquire();
        System.out.println("P 操作");
        semaphore.acquire();
        System.out.println("P 操作");
        semaphore.acquire();
        System.out.println("P 操作");
        semaphore.acquire();
        System.out.println("P 操作");
    }
}

运行结果

相关面试题

1) 线程同步的方式有哪些?

synchronized, ReentrantLock, Semaphore 等都可以用于线程同步.

2) 为什么有了 synchronized 还需要 juc 下的 lock?

以 juc 的 ReentrantLock 为例, 
synchronized 使用时不需要手动释放锁. ReentrantLock 使用时需要手动释放. 使用起来更
灵活,
synchronized 在申请锁失败时, 会死等. ReentrantLock 可以通过 trylock 的方式等待一段时
间就放弃. 
synchronized 是非公平锁, ReentrantLock 默认是非公平锁. 可以通过构造方法传入一个
true 开启公平锁模式. 
synchronized 是通过 Object 的 wait / notify 实现等待-唤醒. 每次唤醒的是一个随机等待的
线程. ReentrantLock 搭配 Condition 类实现等待-唤醒, 可以更精确控制唤醒某个指定的线
程. 

3) AtomicInteger 的实现原理是什么?

基于 CAS 机制. 伪代码如下:  

class AtomicInteger {
    private int value;
    public int getAndIncrement() {
         int oldValue = value;
         while ( CAS(value, oldValue, oldValue+1) != true) {
             oldValue = value;
         }
         return oldValue;
   }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2157217.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android 新增目录怎么加入git

工作中会遇到android系统源码系统增加第三方功能支持&#xff0c;需要增加目录&#xff0c;那么这个目录怎么提交到服务器上去呢&#xff1f;接下来我们就看下这个问题的解决 一服务器创建仓库 一个新的目录增加到仓库中&#xff0c;需要仓库有对应的仓库地址&#xff0c;这个让…

小记编程语言浮点精度问题

注意&#xff1a; 本文内容于 2024-09-15 20:21:12 创建&#xff0c;可能不会在此平台上进行更新。如果您希望查看最新版本或更多相关内容&#xff0c;请访问原文地址&#xff1a;小记编程语言浮点精度问题。感谢您的关注与支持&#xff01; 浮点数在计算机中不能精确表示所有…

docker启动mysql未读取my.cnf配置文件问题

描述 在做mysql主从复制配置两台mysql时&#xff0c;从节点的my.cnf配置为&#xff1a; [mysqld] datadir /usr/local/mysql/slave1/data character-set-server utf8 lower-case-table-names 1 # 主从复制-从机配置# 从服务器唯一 ID server-id 2 # 启用中继日志 relay-l…

【小沐学CAD】3ds Max常见操作汇总

文章目录 1、简介2、二次开发2.1 C 和 3ds Max C SDK2.2 NET 和 3ds Max .NET API2.3 3ds Max 中的 Python 脚本2.4 3ds Max 中的 MAXScript 脚本 3、快捷键3.1 3Dmax键快捷键命令——按字母排序3.2 3dmax快捷键命令——数字键3.3 3dmax功能键快捷键命令3.4 3Dmax常用快捷键——…

对网页聊天项目进行性能测试, 使用JMeter对于基于WebSocket开发的webChat项目的聊天功能进行测试

登录功能 包括接口的设置和csv文件配置 ​​​​​​ 这里csv文件就是使用xlsx保存数据, 然后在浏览器找个网址转成csv文件 注册功能 这里因为需要每次注册的账号不能相同, 所以用了时间函数来当用户名, 保证尽可能的给正确的注册数据, 时间函数使用方法如下 这里输入分钟, 秒…

肝内胆管癌中三级淋巴结构分布与临床预后的相关性研究|文献精析·24-09-22

小罗碎碎念 这篇文章是关于肝内胆管癌&#xff08;intrahepatic cholangiocarcinoma, iCCA&#xff09;中三级淋巴结构&#xff08;tertiary lymphoid structures, TLSs&#xff09;的分布、密度及其对临床结果的预测价值的研究。 作者类型作者姓名单位名称&#xff08;中文&a…

数据结构——串的模式匹配算法(BF算法和KMP算法)

算法目的&#xff1a; 确定主串中所含子串&#xff08;模式串&#xff09;第一次出现的位置&#xff08;定位&#xff09; 算法应用&#xff1a; 搜索引擎、拼写检查、语言翻译、数据压缩 算法种类&#xff1a; BF算法&#xff08;Brute-Force&#xff0c;又称古典的…

【洛谷】P10417 [蓝桥杯 2023 国 A] 第 K 小的和 的题解

【洛谷】P10417 [蓝桥杯 2023 国 A] 第 K 小的和 的题解 题目传送门 题解 CSP-S1 补全程序&#xff0c;致敬全 A 的答案&#xff0c;和神奇的预言家。 写一下这篇的题解说不定能加 CSP 2024 的 RP 首先看到 k k k 这么大的一个常数&#xff0c;就想到了二分。然后写一个判…

《深入理解JAVA虚拟机(第2版)》- 第13章 - 学习笔记【终章】

第13章 线程安全与锁优化 13.1 概述 面向过程的编程思想 将数据和过程独立分开&#xff0c;数据是问题空间中的客体&#xff0c;程序代码是用来处理数据的&#xff0c;这种站在计算机角度来抽象和解决问题的思维方式&#xff0c;称为面向对象的编程思想。 面向对象的编程思想…

一劳永逸:用脚本实现夸克网盘内容自动更新

系统环境&#xff1a;debian/ubuntu 、 安装了python3 原作者项目&#xff1a;https://github.com/Cp0204/quark-auto-save 感谢 缘起 我喜欢看电影追剧&#xff0c;会经常转存一些资源到夸克网盘&#xff0c;电影还好&#xff0c;如果是电视剧&#xff0c;麻烦就来了。 对于一…

Kettle的安装及简单使用

Kettle的安装及简单使用一、kettle概述二、kettle安装部署和使用Windows下安装案例1&#xff1a;MySQL to MySQL案例2&#xff1a;使用作业执行上述转换&#xff0c;并且额外在表stu2中添加一条数据案例3&#xff1a;将hive表的数据输出到hdfs案例4&#xff1a;读取hdfs文件并将…

Jboss常⻅中间件漏洞

一.CVE-2015-7501 环境搭建 cd vulhub-master/jboss/JMXInvokerServlet-deserialization docker-compose up -d 1.POC&#xff0c;访问地址 172.16.1.4:8080/invoker/JMXInvokerServlet 返回如下&#xff0c;说明接⼝开放&#xff0c;此接⼝存在反序列化漏洞 2.下载 ysose…

7.C++程序中的基本数据类型-数据类型之间的转换

在C中&#xff0c;类型转换是将一个数据类型转为另外一个数据类型&#xff0c;其转换过程比较复杂&#xff0c;目前只讨论基本数据类型之间的转换。 类型转换分为两部分&#xff1a;隐式转换和显示转换 隐式转换又称为自动转换&#xff0c;显示转换又称为强制转换。 隐式转换…

[Linux] Linux进程PCB内部信息的深入理解

标题&#xff1a;[Linux] Linux进程PCB内部信息的深入理解 个人主页&#xff1a;水墨不写bug &#xff08;图片来自网络&#xff09; 目录 一.查看进程 二.认识并了解进程的关键信息 I&#xff0c;PID/PPID II&#xff0c;exe III&#xff0c;cwd 三、fork&#xff08;&…

vue源码分析(九)—— 合并配置

文章目录 前言1.vue cli 创建一个基本的vue2 项目2.将mian.js文件改成如下3. 运行结果及其疑问&#xff1f; 一、使用 new Vue 创建过程的 2 种场景二、margeOption的详细说明1.margeOption的方法地址2.合并策略的具体使用3.defaultStrat 默认策略方法 三&#xff1a;以生命周期…

OpenResty安装及使用

&#x1f353; 简介&#xff1a;java系列技术分享(&#x1f449;持续更新中…&#x1f525;) &#x1f353; 初衷:一起学习、一起进步、坚持不懈 &#x1f353; 如果文章内容有误与您的想法不一致,欢迎大家在评论区指正&#x1f64f; &#x1f353; 希望这篇文章对你有所帮助,欢…

调用本地大模型服务出现PermissionDeniedError的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

【机器学习】---神经架构搜索(NAS)

这里写目录标题 引言1. 什么是神经架构搜索&#xff08;NAS&#xff09;1.1 为什么需要NAS&#xff1f; 2. NAS的三大组件2.1 搜索空间搜索空间设计的考虑因素&#xff1a; 2.2 搜索策略2.3 性能估计 3. NAS的主要方法3.1 基于强化学习的NAS3.2 基于进化算法的NAS3.3 基于梯度的…

ICM20948 DMP代码详解(38)

接前一篇文章&#xff1a;ICM20948 DMP代码详解&#xff08;37&#xff09; 上一回继续解析inv_icm20948_set_slave_compass_id函数&#xff0c;解析了第3段代码&#xff0c;本回解析接下来的代码。为了便于理解和回顾&#xff0c;再次贴出该函数源码&#xff0c;在EMD-Core\so…

队列+宽搜专题篇

目录 N叉树的层序遍历 二叉树的锯齿形层序遍历 二叉树最大宽度 在每个树行中找最大值 N叉树的层序遍历 题目 思路 使用队列层序遍历来解决这道题&#xff0c;首先判断根节点是否为空&#xff0c;为空则返回空的二维数组&#xff1b;否则&#xff0c;就进行层序遍历&#x…