【MySQL】 索引

news2024/11/15 23:51:16

MySQL与磁盘存储

MySQL就是提供数据存储服务的,而最终存储的位置就是磁盘,但是磁盘存储速度慢,所以MySQL如何与磁盘交互,提高数据存储效率,即是MySQL和磁盘交互。

磁盘基础知识回顾

 物理结构

  • 磁道:磁盘是被划分成多个同心圆,每一个同心圆都是一个磁道
  • 扇区:每个磁道又被划分成多个扇区,扇区是磁盘中最小的读写单位,一般情况下都是512或者4096字节(目前新的扇区有其他字节数,并非固定的数字)
    • 半径方向上,距离圆心越近,扇面越小,距离圆心越远,那么扇区越大
  • 柱面:在多碟片的磁盘中,不同磁片相同半径的磁道组成柱面

文件查询和磁盘关系

本质上,找到某个文件全部内容也就是找到该磁盘的扇区,只是一个反应在软件上一个体现在硬件上。

 定位扇区

CHS寻址方法,也就是借助柱面、磁头和扇区来标识磁盘上数据的位置

  • 选择柱面:硬盘控制器,通过磁盘上的电磁轨道选择某个柱面(也就是磁盘垂直方向上相同半径下所有盘片的磁道形成的圆柱体--类似于一堆光碟的堆积)
  • 选择磁头:根据需要访问的数据所在的盘面,磁头定位到相应的磁道上
  • 选择扇区:也就是磁头在磁道上找到目标扇区,开始进行读/写操作

目前主流的方式是LBA(逻辑块寻址),简单来说就是将硬盘的扇区编号为连续的逻辑块号,乜咯逻辑块对应一个扇区,操作系统则通过逻辑快号(LBA)来访问硬盘数据,而不再依赖柱面、磁头和扇区的物理结构。

分析:系统软件不按照硬件访问内存的大小进行I/O交互的原因

结论肯定是不可以,因为如果按照硬件读取磁盘的大小进行设计系统软件,那么每一次硬件读取磁盘大小的变化,系统软件都需要重新设计一次,所以不显示。而文件系统的出现就是为了解决该问题,文件系统的基本单位是数据块,不是扇区,其基本单位是4kb。 

操作系统与磁盘的交互中,操作系统不会直接处理扇区,而是通过块来读取数据,可以说扇区是硬件的最小读写单元,而块则是操作系统用来管理数据的逻辑单位,通常块的大小是多个扇区组成的。

简单理解块是什么

块就是操作系统中用于存储数据的最小单位,一般情况是4KB(也就是8个512字节的扇区,或者一个4096的扇区)。操作系统为了简化管理这些块,将数据以块为单位进行组织,同时文件系统会使用这些块来存储文件。数据存储在硬盘上,是以块的形式进行存储的。

虽然硬盘的最小物理存储单位是扇区,但是操作系统通过文件系统将多个扇区组合成块来使用。这也就导致了块的大小对性能影响较大,如果块太小,可能需要更多的寻道操作,导致性能下降;如果块要太大的话,会导致浪费空间。

磁盘随机访问与顺序访问

随机访问

随机访问具体来说就是在不同磁盘区域之间来回读写数据的过程,这也就意味着每次 I/O操作,磁盘的读写磁头必须在不同的位置移动,以此来定位到不同扇区。但是硬盘是机械设备,磁头的物理移动会产生延迟,也就是寻道时间。寻道时间就是影响效率的根源。

因为每次I/O操作之间都是没有规律的,磁头是需要频繁移动的,所以随机访问更适合去访问那些需要频繁访问但是比较小的文件。

顺序访问

顺序访问就是磁盘读写数据的时候按照连续的地址顺序进行,一般情况磁头只需要进行较小的移动就可以找到数据。该种方式可以有效降低寻道时间,所以该种方法效率高,适合大文件读取。

随机与顺序访问的实际影响

  • 数据库:处理大规模小查询的时候,如果此时数据存放的物理位置不同,系统就会产生大量的随机访问,会影响数据库的整体性能
  • 文件系统碎片化:如果文件是分散存储在不同磁盘区域中的时候,读取该文件需要多次随机访问,这样同样会降低读写性能

固态硬盘SSD对传统磁盘的性能突破分析

固态硬盘的访问方式则是对机械硬盘的访问进行了颠覆,其本身是没有磁头等,也就不需要寻道时间也没有旋转延迟,所以SSD的随机读取速度是比机械快很多。

所以如果使用的是SSD,那么系统设计者应该更加关注I/O操作而不是存放位置所带来的性能消耗。

现代操作系统和磁盘的关系

目前的操作系统则是通过缓存和预读的技术来减少磁盘访问次数,具体来说就是将一部分常用的数据存储在内存中,从而减少每次访问都需要去磁盘中读取的需求。

操作系统也是通过文件系统来管理数据,通过将文件分配到连续的块来优化顺序访问的性能。但是文件系统还需要处理文件碎片问题,尽可能将文件存储在连续的物理位置,从而减少随机访问带来的性能损耗。

MySQL与磁盘交互基本单位

MySQL的基本I/O单位

MySQL的InnoDB存储引擎中,页面是基本的存储和管理单位,每个InnoDB页的默认大小都是16Kb,MySQL的数据操作和磁盘I/O都是以页面为单位进行的,这样可以提高I/O效率,减少频繁的磁盘寻道和数据传输而导致的性能下降问题

页大小为16kb原因

  • 使用更大的数据块,可以一次性读写更多的数据,从而减少硬盘读写的次数,也就提升了I/O效率
  • 可以提高顺序读取的效率

 MySQL通过将访问磁盘的基本单位扩大到16KB页面,有效提升了磁盘的I/O效率,特别是处理大规模的数据的时候,减少了频繁的小块读写操作。

MySQL与I/O操作的基本原理

MySQL可以通过内存缓存机制和page单位操作,从而优化磁盘I/O,进而提高数据库性能

  • page单位存储
    • MySQL上的数据文件都是以page进行存储的,一个page就是16KB
  • CURD操作与计算
    • MySQL的增删查改操作都是涉及到存储为止的查找或者数据的修改,这些操作也是依赖计算来确定数据在磁盘上的位置
  • 内存与磁盘交互
    • CPU使用数据的时候会先将数据放入到内存中,然后再进行访问,这样可以提高访问速度,数据刷新的基本单位也就是page
  • Buffer Pool
    • MySQL在服务器内存中分配的有对应缓冲区,也就是Buffer Pool,用于缓存从磁盘中读取的数据并减少磁盘的I/O次数

 深入理解索引

索引使用

创建员工信息表,然后再name字段上创建单列索引,同时在age和department上创建组合索引

插入信息

查询索引,分析索引的作用

 单个和多个page

MySQL和磁盘交互时,使用page本质目的就是为了减少I/O次数,从而提高性能

单个page

 InnoDB存储引擎中,page是数据存储和管理的基本单位,默认大小是16KB,页目录类似于一本书的目录,也就是在查询的时候不需要扫描整页内容,只需要通过页目录定位到数据的位置

一个page中的内容

  • 文件头:记录页的也谢基本信息,例如页类型、大小等
  • 页头:页的具体属性,例如记录数、页的空闲空间等
  • infimum 和 supremum记录:每个页都有两个虚拟的最小和最大记录
  • 用户记录:实际存储的数据行
  • 空闲空间:用于存储新插入的数据
  • 文件尾:效验页的完整性

多个page

如果存储的数据超过了单个page的容量时候,数据就会存储到其他page中,这样也就出现了多个page。数据库采用索引结构(例如B+树)管理和检索分布在不同的page的数据。

例如图书馆的书架,索引就像目录,page就像书架上的书本,通过目录可以快速找到所需要的书,而不需要一本一本的翻找。

单页与多页的情况

单页情况

  • 所有的数据都放在一个page内,查找速度快,只需要进行一次I/O就可以完成查找
  • 页内查找是可以通过页目录加速

多页情况

  • 数据分布在多个page中,需要通过索引定位到具体的page
  • 如果查找的话是需要进行多次磁盘I/O,但是如果通过B+树等数据结构,可以减少I/O的次数,从而提高效率、

在多页情况下,索引的作用体现的更加明显,因为可以帮助在多个page中快速定位到自己需要寻找的数据,从而实现自己调用数据的目的。

B+树和B树

数据结构可视化 (usfca.edu)

B树的特点

  • 所有的节点都存储键和值
  • 叶子节点和内部节点都可能包含数据
  • 不利于范围查询,因为数据都分布在各个节点上

B+树特点

  • 只有叶子节点存储真正的数据,内部节点仅仅存储键和指针
  • 叶子节点通过双向链表连接,便于顺序遍历和范围查询
  • 树的高度更低,查询效率更高

B+树的理解

  • 类似于一个有层级的目录,顶部是章节标题(内部节点),底部是具体的内容页(叶子节点),如果要找某个内容,只需要根据章节标题就可以快速定位到对应的内容页

InnoDB选择B+树的原因

  • 因为B+树的设计就像一本精心设计的百科全书,目录清晰查找方便,无论是想要寻找哪一页,都需要翻过相同数量的页数,确保了查找的稳定性
  • B+树的优点
    • 磁盘I/O性能优化:内部节点小,磁盘读取的时候可以加载更多的信息,减少I/O的次数
    • 顺序访问性能高:因为叶子节点是通过链表相连接的
    • 性能稳定:树的高度平衡,任何数据的查找路径都是相同的

聚簇索引和非聚簇索引

基本概念

  • 聚簇索引:数据行按照主键的顺序存储,叶子节点包含了完整的数据行
  • 非聚簇索引:索引的叶子节点存储的是键值和指向数据行的指针

聚簇索引就像一本按照章节编订的书籍,章节内容紧密连接(没有目录的书)。而非聚簇索引就像是书的索引页,指出关键词所在的章节,需要翻到对应的章节去阅读。

聚簇索引的特点

  • 每个表只有一个聚簇索引
  • 插入的新数据可能会导致数据的物理移动,影响插入性能
  • 数据物理上是按照主键顺序存储的,有利于范围查询和排序

非聚簇索引特点

  • 适用于非频繁查询的列
  • 叶子节点存储索引列和主键值,需要通过主键回表查询完整数据
  • 插入和更新对非聚簇索引的影响小

MyISAM(非聚簇索引)

该搜索引擎中,索引诶和数据是分开的

  • B+树的叶子节点中存储的不是实际行数据,而是指向数据所在位置的地址,这些指针指向的是数据文件中的物理位置,也就是访问实际数据需要借助其地址找到其数据
  • 该引擎中的主键索引和二级索引结构是没有本质区别,叶子节点都是存储指向数据的指针

创建表插入数据

查看表结构和索引 

InnoDB(聚簇索引)

该搜索引擎的主键索引就是聚簇索引,也就是说B+树的叶子节点中存储了实际的行数据。每个表的主键都会自动创建为聚簇索引,也就是说数据和主键在物理空间上是存储在一起的,如果查询的时候使用主键,就可以直接在主键的叶子节点获取完整的行数据

二级索引在叶子节点存储的是主键值而不是物理地址,因此通过二级索引查找到数据后,还是需要通过主键索引再次定位到实际数据的物理位置

创建表插入数据

表结构和索引

验证聚簇查询速度

索引的使用

不同索引类型

主键索引:每个表中只允许有一个主键索引,主键列的值是唯一的,用于唯一标识表中的每一行数据

CREATE TABLE Employee (
    emp_id INT PRIMARY KEY,   -- 创建主键索引
    name VARCHAR(50),
    age INT
);

唯一索引:保证索引列的值是唯一的,允许NULL值,其可以避免表中某列包含的重复值,表中是可以有多个唯一索引的,唯一索引允许多个NULL值 

CREATE UNIQUE INDEX idx_unique_email ON Users (email);  -- 创建唯一索引

 普通索引:不对列的值进行唯一性约束,主要用于加速查询,同时也不会对数据的唯一性进行强制检查

CREATE INDEX idx_name ON Employee (name);  -- 创建普通索引

全文索引:专门用于全文检索,比常规的Like查询高效,适用于大量文本内容的检索

CREATE FULLTEXT INDEX idx_fulltext ON Articles (content);  -- 创建全文索引

查询索引:通过show index 来查看某个表的索引,索引查询可以帮助理解当前表的索引结构

删除索引 

DROP INDEX idx_name ON Employee;  -- 删除普通索引

索引的使用与测试 

创建表与插入大量数据(可以通过.sql文件的方式进行插入)

CREATE TABLE Employees (
    emp_id INT AUTO_INCREMENT PRIMARY KEY,
    first_name VARCHAR(50),
    last_name VARCHAR(50),
    email VARCHAR(100),
    department_id INT,
    hire_date DATE,
    salary DECIMAL(10, 2)
) ENGINE=InnoDB;
DELIMITER $$

CREATE PROCEDURE InsertEmployees()
BEGIN
    DECLARE i INT DEFAULT 1;
    WHILE i <= 1000000 DO
        INSERT INTO Employees (first_name, last_name, email, department_id, hire_date, salary)
        VALUES (CONCAT('First', i), CONCAT('Last', i), CONCAT('email', i, '@company.com'), FLOOR(1 + (RAND() * 10)), 
                '2020-01-01', FLOOR(30000 + (RAND() * 70000)));
        SET i = i + 1;
    END WHILE;
END $$

DELIMITER ;

CALL InsertEmployees();

无索引下搜索某个数据

此时需要扫描整个数据表去查找这个数据,逐行查出目标数据

创建普通索引并测试查询性能 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2156380.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI运动小程序开发常见问题集锦一

截止到现在写博文时&#xff0c;我们的AI运动识别小程序插件已经迭代了23个版本&#xff0c;成功应用于健身、体育、体测、AR互动等场景&#xff1b;为了让正在集成或者计划进行功能扩展优化的用户&#xff0c;少走弯路、投入更少的开发资源&#xff0c;我们归集了一部分集中的…

想复制其他设备上的软件?看这里!-未来之窗行业应用跨平台架构

一、多好用的软件&#xff0c;已经没有apk安装包&#xff0c;很遗憾 1. 用户体验受损 &#xff1a;对于那些曾经依赖并喜爱这些软件的用户来说&#xff0c;无法再获取和使用它们&#xff0c;极大地影响了用户的日常体验和工作效率。 2. 功能缺失 &#xff1a;可能导致特定的功…

Kubernetes实战——集群监控和可视化管理

目录 一、Kube-Prometheus 1、版本兼容性介绍 2、安装 kube-prometheus 3、安装Ingress&#xff0c;实现访问 二、K8s安装ELK日志收集 1、安装Elasticsearch 2、安装Logstash 3、安装Filebeat 4、安装Kibina 三、Dashboard安装与使用 1、安装 2、创建token 3、使用 …

【算法业务】互联网风控业务中的续贷审批模型(融合还款意愿分层的逾期风险识别模型)

1、背景说明 本文旨在提出一种针对风控催收受限情况下&#xff0c;如何提升风控审批模型的风险识别能力&#xff0c;以缓解贷后催收的压力&#xff0c;降低贷款资金坏账的风险。这篇工作依然是很早期的项目&#xff0c;分享的目的一方面做笔记&#xff0c;另一方面则是希望其中…

[Redis] 渐进式遍历+使用jedis操作Redis+使用Spring操作Redis

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…

一种求解无人机三维路径规划的高维多目标优化算法,MATLAB代码

在无人机三维路径规划的研究领域&#xff0c;高维多目标优化算法是一个重要的研究方向。这种算法能够同时考虑多个目标&#xff0c;如航迹距离、威胁代价、能耗代价以及多无人机协同性能等&#xff0c;以实现无人机路径的最优规划。 无人机路径规划算法的研究进展表明&#xf…

22、Raven2

难度 中 目标 root权限 4个flag 使用Virtualbox启动 kali 192.168.86.105 靶机 192.168.86.106 信息收集 看到111端口有一个rpc相关的东西&#xff0c;去网上查看了一下是什么服务 通过在网上搜索发现这是一个信息泄露的漏洞&#xff0c;上面的这个端口其实就是泄露的端口和…

Python | Leetcode Python题解之第416题分割等和子集

题目&#xff1a; 题解&#xff1a; class Solution:def canPartition(self, nums: List[int]) -> bool:n len(nums)if n < 2:return Falsetotal sum(nums)if total % 2 ! 0:return Falsetarget total // 2dp [True] [False] * targetfor i, num in enumerate(nums…

为什么编程很难?

之前有一个很紧急的项目&#xff0c;项目中有一个bug始终没有被解决&#xff0c;托了十几天之后&#xff0c;就让我过去协助解决这个bug。这个项目是使用C语言生成硬件code&#xff0c;是更底层的verilog&#xff0c;也叫做HLS开发。 项目中的这段代码并不复杂&#xff0c;代码…

24年 九月 刷题记录

1. leetcode997找到小镇的法官 小镇里有 n 个人&#xff0c;按从 1 到 n 的顺序编号。传言称&#xff0c;这些人中有一个暗地里是小镇法官。 如果小镇法官真的存在&#xff0c;那么&#xff1a; 小镇法官不会信任任何人。 每个人&#xff08;除了小镇法官&#xff09;都信任这…

利用QEMU安装一台虚拟机的三种方法

文章目录 宿主机的选择方法一&#xff1a;直接用qemu源码安装步骤1&#xff1a;下载好qemu源码&#xff0c;这里我们用qemu-5.1.0步骤2&#xff1a;编译步骤3&#xff1a;创建一个系统盘步骤4&#xff1a;用步骤2编译的qemu-system-x86_64 启动一台Linux虚拟机步骤5&#xff1a…

问题——IMX6UL的uboot无法ping主机或Ubuntu

主要描述可能的方向&#xff0c;不涉具体过程&#xff0c;详细操作可以查阅网上相关教程 跟随正点原子教程测试以太网端口时&#xff0c;即便按照步骤多次尝试也无法ping通&#xff0c;后补充了些许网络工程基础知识解决了这个问题。 uboot无法ping主机或Ubuntu有多种可能&…

二分查找算法(3) _x的平方根

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 二分查找算法(3) _x的平方根 收录于专栏【经典算法练习】 本专栏旨在分享学习算法的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 温馨…

简易CPU设计入门:取指令(一),端口列表与变量声明

取指令这一块呢&#xff0c;个人觉得&#xff0c;不太好讲。但是呢&#xff0c;不好讲&#xff0c;我也得讲啊。那就尽量地讲吧。如果讲得不好的话&#xff0c;那么&#xff0c;欢迎大家提出好的意见&#xff0c;帮助我改进讲课的质量。 首先呢&#xff0c;还是请大家去下载本…

面试官:Spring是如何解决循依赖问题?

Spring 的循环依赖一直都是 Spring 中一个很重要的话题&#xff0c;一方面是 Spring 为了解决循环依赖做了很多工作&#xff0c;另一个方面是因为它是面试 Spring 的常客&#xff0c;因为他要求你看过 Spring 的源码&#xff0c;如果没有看过 Spring 源码你基本上是回答不了这个…

pytorch的动态计算图机制

pytorch的动态计算图机制 一&#xff0c;动态计算图简介 Pytorch的计算图由节点和边组成&#xff0c;节点表示张量或者Function&#xff0c;边表示张量和Function之间的依赖关系。 Pytorch中的计算图是动态图。这里的动态主要有两重含义。 第一层含义是&#xff1a;计算图的…

“吉林一号”宽幅02B系列卫星

离轴四反光学成像系统 1.光学系统参数&#xff1a; 焦距&#xff1a;77.5mm&#xff1b; F/#&#xff1a;7.4&#xff1b; 视场&#xff1a;≥56゜&#xff1b; 光谱范围&#xff1a;400nm&#xff5e;1000nm。 2.说明&#xff1a; 光学系统采用离轴全反射式结构&#xff0c;整…

解密的军事卫星图像在各种民用地理空间研究中都有应用

一、美军光学侦察卫星计划概述 国家侦察局 &#xff08;NRO&#xff09; 负责开发和操作太空侦察系统&#xff0c;并为美国国家安全开展情报相关活动。NRO 开发了几代机密锁眼 &#xff08;KH&#xff09; 军事光学侦察卫星&#xff0c;这些卫星一直是美国国防部 &#xff08;D…

人工智能不是人工“制”能

文/孟永辉 如果你去过今年在上海举办的世界人工智能大会&#xff0c;就会知道当下的人工智能行业在中国是多么火爆。 的确&#xff0c;作为第四次工业革命的重要组成部分&#xff0c;人工智能愈发引起越来越多的重视。 不仅仅是在中国&#xff0c;当今世界的很多工业强国都在将…

python爬虫案例——异步加载网站数据抓取,post请求(6)

文章目录 前言1、任务目标2、抓取流程2.1 分析网页2.2 编写代码2.3 思路分析前言 本篇案例主要讲解异步加载网站如何分析网页接口,以及如何观察post请求URL的参数,网站数据并不难抓取,主要是将要抓取的数据接口分析清楚,才能根据需求编写想要的代码。 1、任务目标 目标网…