认识结构体

news2024/12/28 22:37:29

目录

一.结构体类型的声明

1.结构的声明

2.定义结构体变量

3.结构体变量初始化

4.结构体的特殊声明

二.结构体对齐(重点难点)

1.结构体对齐规则

2.结构体对齐练习

(一)简单结构体对齐

(二)嵌套结构体对齐

3.为什么存在内存对齐

4.修改默认对齐数

三.结构体传参

1. 结构体的值传递

2. 结构体的指针(地址)传递

3.两种传参方式,哪种更好?

四.结构体位段

1.位段的内存分配

2.位段的跨平台问题

3.位段的应用

4.位段使用的注意事项


一.结构体类型的声明

1.结构的声明

struct tag
{
 member-list;
}variable-list;

tag结构体类型(标识符),通常用来给结构体类型命名。

member-list结构体的成员列表,列出了结构体中包含的各个成员。

variable-list可选的(可以不写),指在定义结构体类型时,直接声明一个或多个该结构体类型的变量

2.定义结构体变量

举个例子:

struct Person {
    char name[50];
    int age;
    float height;
};

结构体类型声明后,可以使用该类型定义结构体变量:

struct Person person1;
//person1是结构体类型变量
//这就是为什么我在前面介绍结构体时说variable-list 是可选的,我们可以在main()函数里边定义

这会创建一个 Person 类型的变量 person1,你可以通过 “.” 操作符访问结构体的成员,亦或者直接:

person1.age = 30;
person1.height = 1.75;
strcpy(person1.name, "Alice");

3.结构体变量初始化

续接上面:

我们在初始化的时候可以以两种方法初始化:

(1)按照结构体成员的顺序初始化

(2)按照指定的顺序初始化

按照结构体成员的顺序初始化 
struct Person person1={"Alice",30,1.75};

//按照指定的顺序初始化 
struct Person person2={.name="zhangsan",.age=30,.height=1.75};

//打印
printf("%s\n", person1.name);
printf("%d\n", person1.age);
printf("%f\n", person1.height);

注意:第二种的结构体初始化使用了指定成员初始化的语法,该语法是 C99 标准引入的。如果你的编译器支持 C99 或更高版本,那么这种初始化语法是正确的,否则就是错误的,在我们常用的VS2022就是不行的。

4.结构体的特殊声明

声明匿名结构体

你可以直接声明一个匿名结构体并定义一个变量:

struct {
    int x;
    int y;
} point;  // point 是一个匿名结构体变量
  • 这里没有给结构体指定名字 (tag),但声明了一个名为 point 的变量。你可以通过 point.xpoint.y 来访问成员。
  • 这种方式适合只需要使用一次结构体的情况,不需要在其他地方重复使用结构体类型。

我们这里看一例子:

struct
{
 int a;
 char b;
 float c;
}x;
struct
{
 int a;
 char b;
 float c;
}a[20], *p;

上⾯的两个结构在声明的时候省略掉了结构体标签(tag)。那么问题来了?

//在上⾯代码的基础上,下⾯的代码合法吗? 
p = &x;

答案是非法的。

编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。

匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用⼀次。

C 语言要求结构体赋值时,类型必须完全匹配,匿名结构体由于没有类型名称(tag),因此不能跨定义赋值。

二.结构体对齐(重点难点)

1.结构体对齐规则

1.结构体的第⼀个成员对齐到和结构体变量起始位置偏移量为0的地址处 

2.其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。

-对⻬数=编译器默认的⼀个对齐数与该成员变量大小的较小值。

-VS 中默认的值为 8

-Linux中gcc没有默认对齐数,对齐数就是成员自身的大小

3.结构体总大小为最大对齐数(结构体中每个成员变量都有⼀个对齐数,所有对齐数中最大的)的整数倍。

4.如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍。

2.结构体对齐练习

(一)简单结构体对齐

我们来看一个例子:

struct S1
{
 char c1;
 int i;
 char c2;
};
struct S2
{
 char c1;
 char c2;
 int i;
};

printf("%d\n", sizeof(struct S1));
printf("%d\n", sizeof(struct S2));

打印出来的结果是?

对于第一个结构体来说:

一个12个字节

对于第二个结构体:

一共8个字节

我们看一下在vs2022运行的结果:

显然和我们计算的一样

(二)嵌套结构体对齐

struct S3
{
	double d;//double型占8个字节
	char c;
	int i;
};

struct S4
{
	char c1;
	struct S3 s3;
	double d;
};

printf("%d\n", sizeof(struct S3));
printf("%d\n", sizeof(struct S4));

对于上面代码我们容易算得s3的字节数为:16个字节

那s4怎么算?

这时我们就要用到规则4了。c1的一个字节加上,s3的16个字节就有17个字节了,然后根据规则4,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,也就是使用结构体S3里面的最大的结构体成员,即double d(8个字节),这时再用规则2,因为8和8一样大,则直接使用8对齐,显然最合适的是24个字节.

还剩一个double b没算,加上8个字节,一共32个字节。

再用规则3,最大的为8,恰好32也是8的倍数,刚刚合适,所以s4的计算结果为32个字节。

我们来看一下结果:

显然是对的。

3.为什么存在内存对齐

1.平台原因(移植原因):

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定 类型的数据,否则抛出硬件异常。

2. 性能原因

数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要 作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地 址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以 ⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两 个8字节内存块中。

总体来说:结构体的内存对⻬是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到

让占⽤空间⼩的成员尽量集中在⼀起

就像我们一开始介绍的简单结构体对齐那样!

struct S1
{
 char c1;
 int i;
 char c2;
};
struct S2
{
 char c1;
 char c2;
 int i;
};

他们两长的一样,但是占用字节空间却有了区别...

4.修改默认对齐数

#pragma这个预处理指令,可以改变编译器的默认对⻬数。

#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1 
struct S
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认 
int main()
{
 //输出的结果是什么? 
 printf("%d\n", sizeof(struct S));
 return 0;
}

结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数。

当然我们在处理恰当的时候,可以节省更多空间

三.结构体传参

1. 结构体的值传递

值传递是将结构体的副本传递给函数。函数内对结构体的修改不会影响原始结构体的数据。

#include <stdio.h>

struct Point {
    int x;
    int y;
};

void printPoint(struct Point p) {
    printf("Point: (%d, %d)\n", p.x, p.y);
}

int main() {
    struct Point p1 = {10, 20};
    printPoint(p1);  // 值传递
    return 0;
}

结果为:

2. 结构体的指针(地址)传递

指针传递是将结构体的地址传递给函数。函数内对结构体的修改将影响原始结构体的数据

#include <stdio.h>

struct Point {
    int x;
    int y;
};

void modifyPoint(struct Point *p) {
    p->x = 30;
    p->y = 40;
}

int main() {
    struct Point p1 = {10, 20};
    modifyPoint(&p1);  // 指针传递
    printf("Point: (%d, %d)\n", p1.x, p1.y);  // 修改后的值
    return 0;
}

结果为:

3.两种传参方式,哪种更好?

答案是:指针(地址)传参更好。

原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。

如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较大,所以会导致性能的下降。

结论: 结构体传参的时候,要传结构体的地址。

四.结构体位段

位段的声明和结构是类似的,有两个不同:

1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以 选择其他类型。

2. 位段的成员名后边有⼀个冒号和⼀个数字。

举个例子:

struct A
{
 int _a:2;
 int _b:5;
 int _c:10;
 int _d:30;
};

A就是⼀个位段类型。那位段A所占内存的大小是多少?

咱接着往下看

1.位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。

我们再来看:

struct S
{
 char a:3;
 char b:4;
 char c:5;
 char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

假设在一个字节中,地址从右往左存储

具体如图:

在一个字节中如果剩下的比特位不够存放该数的二进制位,则系统会再开辟一个新的空间(如果是char那就开辟一个字节也就是8个比特位,如果是int型就开辟32个比特位也就是4个字节),并存储该数。

可以看到,一共开辟了24个比特位,也就是3个字节

2.位段的跨平台问题

1. int位段被当成有符号数还是⽆符号数是不确定的。

2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会 出问题。

3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。

4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较⼤,⽆法容纳于第⼀个位段剩余的位时,是舍弃 剩余的位还是利⽤,这是不确定的。

总结

跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3.位段的应用

下图是网络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这⾥ 使⽤位段,能够实现想要的效果,也节省了空间,这网络传输的数据报大小也会较小⼀些,对网络的畅通是有帮助的。

4.位段使用的注意事项

位段的几个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位 置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在⼀个变量中,然后赋值给位段的成员。

struct A
{
 int _a : 2;
 int _b : 5;
 int _c : 10;
 int _d : 30;
};
int main()
{
 struct A sa = {0};
 scanf("%d", &sa._b);//这是错误的 
 
 //正确的⽰范 
 int b = 0;
 scanf("%d", &b);
 sa._b = b;
 return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2156072.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PMP--二模--解题--51-60

文章目录 14.敏捷--术语表--完成的定义DoD--它是团队需要满足的所有标准的核对单&#xff0c;只有可交付成果满足该核对单才能视为准备就绪可供客户使用。51、 [单选] 在冲刺计划会议上&#xff0c;Scrum主管重申&#xff0c;如果在冲刺结束时敏捷项目团队正在构建的产品增量没…

五种IO模型和阻塞IO

文章目录 五种 IO 模型和阻塞 IO1、五种 IO 模型1.1、阻塞 IO1.2、非阻塞 IO1.3、信号驱动 IO1.4、IO 多路转接1.5、异步 IO1.6、总结 2、高级 IO 概念2.1、同步通信&#xff08;synchronous communication&#xff09;和异步通信&#xff08;asynchronous communication&#…

第十五章:使用html、css、js编程制作一个网页版的下雪场景动画

背景:这是一个充满诗意的下雪场景代码。打开网页时,雪花轻轻飘落,覆盖住你的屏幕,仿佛置身于冬日的夜空下。背景音乐《我期待的不是雪》缓缓响起,伴随着雪花的飘动,仿佛心中的那份爱与温柔悄然绽放。 雪花的飘落是梦境般的存在,每一片雪花都是轻盈的告白,旋转着从天际…

使用GitHub Actions自动发布electron多端安装程序

GitHub Actions 是一个强大的自动化工具&#xff0c;可以帮助开发者在 GitHub 仓库中自动化构建、测试和部署工作流程。我们的客户端就是使用github action来打包项目发布的。 以下是关于 GitHub Actions 自动化构建的一些关键点和步骤&#xff1a; GitHub Actions 的基本概念…

go注册中心Eureka,注册到线上和线下,都可以访问

go注册中心Eureka&#xff0c;注册到线上和线下&#xff0c;都可以访问 本地通过127访问&#xff0c; 线上通过内网ip访问 package mainimport ("github.com/SimonWang00/goeureka""github.com/gin-gonic/gin""wbGo/controller""wbGo/task…

【工具变量】地市环保法庭试点城市DID数据集(2005-2023年)

数据简介&#xff1a;环保法庭是中国司法体系中专门处理环境资源案件的审判机构&#xff0c;其主要职责包括审理涉及自然环境污染、矿产资源保护、自然资源环境开发等环境资源民事纠纷案件&#xff0c;对不服下级人民法院生效裁判的环境资源民事案件进行审查&#xff0c;以及对…

Java_Se--方法

方法就是一个代码片段. 类似于 C 语言中的 "函数"。方法存在的意义(不要背, 重在体会): 1. 是能够模块化的组织代码 ( 当代码规模比较复杂的时候 ). 2. 做到代码被重复使用 , 一份代码可以在多个位置使用 . 3. 让代码更好理解更简单 . 4. 直接调用现有方法开…

cv中每个patch的关联

在计算机视觉任务中&#xff0c;当图像被划分为多个小块&#xff08;patches&#xff09;时&#xff0c;每个 patch 的关联性可以通过不同的方法来计算。具体取决于使用的模型和任务&#xff0c;以下是一些常见的计算 patch 关联性的方法&#xff1a; 1. Vision Transformer (…

IDA Pro-代码结构识别

Lab06-01.exe分析 1.由main 函数调用的唯一子过程中发现的主要代码结构是什么? if语句结构 找到main函数中唯一调用的函数&#xff0c;并进入 判断网络是否链接成功&#xff0c;如果返回0走右边未连接成功 2.位于0x40105F的子过程是什么? 将字符串压栈&#xff0c;猜测…

双非本 985 硕士,秋招上岸字节算法岗!

最近已有不少大厂都在秋招宣讲了&#xff0c;也有一些在 Offer 发放阶段。 节前&#xff0c;我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。 针对新人如何快速入门算法岗、如何准备面试攻略、面试常考点、大模型项目落地经验分享等热门话题进行了深入的讨论。…

面向对象程序设计——set容器の简析

1.set的介绍 • 序列式容器和关联式容器 • 我们已经接触过STL中的部分容器如&#xff1a;string、vector、list、deque、array、forward_list等&#xff0c;这些容器统称为序列式容器&#xff0c;因为逻辑结构为线性序列的数据结构&#xff0c;两个位置存储的值之间⼀般没有紧…

Python GUI 编程:tkinter 初学者入门指南——窗口

目录&#xff1a; 创建窗口更改窗口标题更改窗口大小和位置窗口在屏幕上居中窗口设置的其他属性 Tkinter 是在 Python 中开发 GUI&#xff08;图形用户界面&#xff09;最常用的库。在本指南中&#xff0c;我们将引导您了解 Tkinter 的基本知识&#xff0c;学习如何使用 Tkinte…

汽车电子零部件(16):ZCU区域控制器

ZCU(Zone Control Unit,区域控制器),功能主要包括哦数据交互、信号控制及电力分配等,是智能网联汽车中不可或缺的关键组件,ECU负责车身、车门、车窗、天窗、车灯(外大灯、内氛围灯)、座椅(可能包括座椅音响)、雷达甚至后排娱乐系统等控制执行单元的集中化。 CCU(centr…

【后端开发】JavaEE初阶—Theard类及常见方法—线程的操作(超详解)

前言&#xff1a; &#x1f31f;&#x1f31f;本期讲解多线程的知识哟~~~&#xff0c;希望能帮到屏幕前的你。 &#x1f308;上期博客在这里&#xff1a;【后端开发】JavaEE初阶—线程的理解和编程实现-CSDN博客 &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondl…

Vue3新组件transition(动画过渡)

transition组件&#xff1a;控制V-if与V-show的显示与隐藏动画 1.基本使用 <template><div><button click"falg !falg">切换</button><transition name"fade" :enter-to-class"etc"><div v-if"falg&quo…

【开源服务框架】Dubbo

&#x1f384;欢迎来到边境矢梦的csdn博文&#x1f384; &#x1f384;本文主要梳理Java面试中开源服务框架Dubbo会涉及到的知识点 &#x1f384; &#x1f308;我是边境矢梦&#xff0c;一个正在为秋招和算法竞赛做准备的学生&#x1f308; &#x1f386;喜欢的朋友可以关注一…

C++标准库容器类——string类

引言 在c中&#xff0c;string类的引用极大地简化了字符串的操作和管理&#xff0c;相比 C 风格字符串&#xff08;char*或cahr[]&#xff09;&#xff0c;std::string 提供了更高效和更安全的字符串操作。接下来让我们一起来深入学习string类吧&#xff01; 1.string 的构造…

sqli-lab靶场学习(三)——Less8-10(盲注、时间盲注)

Less8 第八关依然是先看一般状态 http://localhost/sqli-labs/Less-8/?id1 然后用单引号闭合&#xff1a; http://localhost/sqli-labs/Less-8/?id1 这关的问题在于报错是不显示&#xff0c;那没办法通过上篇文章的updatexml大法处理。对于这种情况&#xff0c;需要用“盲…

【C++笔记】C++编译器拷贝优化和内存管理

【C笔记】C编译器拷贝优化和内存管理 &#x1f525;个人主页&#xff1a;大白的编程日记 &#x1f525;专栏&#xff1a;C笔记 文章目录 【C笔记】C编译器拷贝优化和内存管理前言一.对象拷贝时的编译器优化二.C/C内存管理2.1练习2.2 C内存管理方式2.3 operator new与operator…

线程池动态设置线程大小踩坑

在配置线程池核心线程数大小和最大线程数大小后&#xff0c;如果调用线程池setCorePoolSize方法来调整线程池中核心线程的大小&#xff0c;需要特别注意&#xff0c;可能踩坑&#xff0c;说不定增加了线程让你的程序性能更差。 ThreadPoolExecutor有提供一个动态变更线程池核心…