Elasticsearch——介绍、安装与初步使用

news2025/1/10 12:02:17

目录

  • 1.初识 Elasticsearch
    • 1.1.了解 ES
      • 1.1.1.Elasticsearch 的作用
      • 1.1.2.ELK技术栈
      • 1.1.3.Elasticsearch 和 Lucene
      • 1.1.4.为什么不是其他搜索技术?
      • 1.1.5.总结
    • 1.2.倒排索引
      • 1.2.1.正向索引
      • 1.2.2.倒排索引
      • 1.2.3.正向和倒排
    • 1.3.Elasticsearch 的一些概念
      • 1.3.1.文档和字段
      • 1.3.2.索引和映射
      • 1.3.3.MySQL 与 Elasticsearch
    • 1.4.安装 Elasticsearch 和 Kibana
      • 1.4.1.安装 Elasticsearch
      • 1.4.2.安装 Kibana
    • 1.5.安装 IK 分词器
      • 1.5.1.在线安装 IK 插件(较慢)
      • 1.5.2.离线安装 IK 插件(推荐)
      • 1.5.3.扩展词词典
      • 1.4.4.总结
  • 2.索引库操作
    • 2.1.mapping 映射属性
    • 2.2.索引库的 CRUD
      • 2.2.1.创建索引库和映射
      • 2.2.2.查询索引库
      • 2.2.3.修改索引库
      • 2.2.4.删除索引库
      • 2.2.5.总结
  • 3.文档操作
    • 3.1.新增文档
    • 3.2.查询文档
    • 3.3.删除文档
    • 3.4.修改文档
      • 3.4.1.全量修改
      • 3.4.2.增量修改
    • 3.5.总结
  • 4.RestAPI
    • 4.1.导入 Demo 工程
      • 4.1.1.导入数据
      • 4.1.2.导入项目
      • 4.1.3.mapping 映射分析
      • 4.1.4.初始化 RestClient
    • 4.2.创建索引库
      • 4.2.1.代码解读
      • 4.2.2.完整示例
    • 4.3.删除索引库
    • 4.4.判断索引库是否存在
    • 4.5.总结
  • 5.RestClient 操作文档
    • 5.1.新增文档
      • 5.1.1.索引库实体类
      • 5.1.2.语法说明
      • 5.1.3.完整代码
    • 5.2.查询文档
      • 5.2.1.语法说明
      • 5.2.2.完整代码
    • 5.3.删除文档
    • 5.4.修改文档
      • 5.4.1.语法说明
      • 5.4.2.完整代码
    • 5.5.批量导入文档
      • 5.5.1.语法说明
      • 5.5.2.完整代码
    • 5.6.小结

本文笔记整理自黑马 Elasticsearch 教程,相关资料在该视频评论区进行获取。

1.初识 Elasticsearch

1.1.了解 ES

1.1.1.Elasticsearch 的作用

Elasticsearch 是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容。例如:

  • 在 GitHub 搜索代码:
    在这里插入图片描述
  • 在电商网站搜索商品:
    在这里插入图片描述
  • 在 Google 搜索答案:
    在这里插入图片描述
  • 在打车软件搜索附近的车:
    在这里插入图片描述

1.1.2.ELK技术栈

Elasticsearch 结合 Kibana、Logstash、Beats,也就是 elastic stack (ELK)。被广泛应用在日志数据分析、实时监控等领域:

在这里插入图片描述

而 Elasticsearch 是 elastic stack 的核心,负责存储、搜索、分析数据。

在这里插入图片描述

1.1.3.Elasticsearch 和 Lucene

(1)Elasticsearch底层是基于 Lucene 来实现的。Lucene是一个 Java 语言的搜索引擎类库,是 Apache 公司的顶级项目,由 DougCutting 于 1999 年研发。官网地址:https://lucene.apache.org/ 。

在这里插入图片描述

(2)Elasticsearch的发展历史:

  • 2004 年 Shay Banon 基于 Lucene 开发了Compass
  • 2010 年 Shay Banon 重写了 Compass,取名为 Elasticsearch。
    在这里插入图片描述

官网地址:https://www.elastic.co/cn/

1.1.4.为什么不是其他搜索技术?

目前比较知名的搜索引擎技术排名:

在这里插入图片描述

虽然在早期,Apache Solr 是最主要的搜索引擎技术,但随着发展 Elasticsearch 已经渐渐超越了 Solr,独占鳌头:

在这里插入图片描述

1.1.5.总结

(1)什么是 Elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能;

(2)什么是elastic stack (ELK)?

  • 是以 Elasticsearch 为核心的技术栈,包括 Beats、Logstash、Kibana、Elasticsearch;

(3)什么是 Lucene?

  • 是 Apache 的开源搜索引擎类库,提供了搜索引擎的核心 API;

1.2.倒排索引

倒排索引的概念是基于 MySQL 这样的正向索引而言的。

1.2.1.正向索引

那么什么是正向索引呢?例如给下表 tb_goods 中的 id 创建索引:

在这里插入图片描述

如果是根据 id 查询,那么直接走索引,查询速度非常快。

但如果是基于 title 做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据;
3)判断数据中的 title 是否符合用户搜索条件;
4)如果符合则放入结果集,不符合则丢弃。回到步骤 1);

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

1.2.2.倒排索引

(1)倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息。
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条。

(2)创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条;
  • 创建表,每行数据包括词条、词条所在文档 id、位置等信息;
  • 因为词条唯一性,可以给词条创建索引,例如 hash 表结构索引;

如图:

在这里插入图片描述

倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件"华为手机"进行搜索。
2)对用户输入内容分词,得到词条:华为手机
3)拿着词条在倒排索引中查找,可以得到包含词条的文档 id:1、2、3。
4)拿着文档 id 到正向索引中查找具体文档。

如图:

在这里插入图片描述

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3.正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据 id 索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程
  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的 id,然后根据 id 获取文档。是根据词条找文档的过程

是不是恰好反过来了?那么两者方式的优缺点是什么呢?

正向索引

  • 优点:
    • 可以给多个字段创建索引;
    • 根据索引字段搜索、排序速度非常快;
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描;

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快;
  • 缺点:
    • 只能给词条创建索引,而不是字段;
    • 无法根据字段做排序;

1.3.Elasticsearch 的一些概念

Elasticsearch 中有很多独有的概念,与 MySQL 中略有差别,但也有相似之处。

1.3.1.文档和字段

Elasticsearch 是面向**文档 (Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为 JSON 格式后存储在 Elasticsearch 中:

在这里插入图片描述

而 JSON 文档中往往包含很多的字段 (Field),类似于数据库中的列。

1.3.2.索引和映射

索引 (Index),就是相同类型的文档的集合。例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;
    在这里插入图片描述

因此,我们可以把索引当做是数据库中的表

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射 (mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.3.MySQL 与 Elasticsearch

我们统一的把 MySQL 与 Elasticsearch 的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引 (index),就是文档的集合,类似数据库的表 (table)
RowDocument文档 (Document),就是一条条的数据,类似数据库中的行 (Row),文档都是 JSON 格式
ColumnField字段 (Field),就是 JSON 文档中的字段,类似数据库中的列 (Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构 (Schema)
SQLDSLDSL (Domain Specific Language) 是 Elasticsearch 提供的 JSON 风格的请求语句,用来操作 Elasticsearch,实现 CRUD

是不是说,我们学习了 Elasticsearch 就不再需要 MySQL 了呢?并不是如此,两者各自有自己的擅长点:

  • MySQL:擅长事务类型操作,可以确保数据的安全和一致性;
  • Elasticsearch:擅长海量数据的搜索、分析、计算;

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用 MySQL实现;
  • 对查询性能要求较高的搜索需求,使用 Elasticsearch 实现;
  • 两者再基于某种方式,实现数据的同步,保证一致性;
    在这里插入图片描述

1.4.安装 Elasticsearch 和 Kibana

1.4.1.安装 Elasticsearch

(1)安装Docker。这里在 Docker 中安装 Elasticsearch,因此可以先参考https://www.bilibili.com/video/BV1Zn4y1X7AZ?p=6这一视频教程来安装 Docker。

(2)创建网络。因为我们还需要部署 Kibana 容器,因此需要让 Elasticsearch 和 Kibana 容器互联。这里先创建一个网络:

docker network create es-net

(3)加载镜像:这里我们采用 Elasticsearch 的 7.12.1 版本的镜像:

在这里插入图片描述

将其上传到虚拟机中,然后运行命令加载即可,同理还有 Kibana 的 tar 包也需要这样做。

docker load -i es.tar

(4)部署单点 Elasticsearch

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称;
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问;
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小;
  • -e "discovery.type=single-node":非集群模式;
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录;
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录;
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录;
  • --privileged:授予逻辑卷访问权;
  • --network es-net :加入一个名为es-net的网络中;
  • -p 9200:9200:端口映射配置;

在浏览器中输入:http://192.168.101.65:9200(即 Linux IP 地址 + 端口号)即可看到 Elasticsearch 的响应结果:

在这里插入图片描述

在上述过程中,本人遇到了一些问题,具体参考了 安装Docker时,执行yum install -y yum-utils 报错、Docker设置仓库镜像源失败报错File “/usr/bin/yum-config-manager“, line 135 except yum.Errors.RepoError, e:等文章。

1.4.2.安装 Kibana

(1)Kibana 可以给我们提供一个 Elasticsearch 的可视化界面,便于我们学习。

运行 docker 命令,部署 Kibana:

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1

命令解释:

  • --network es-net:加入一个名为 es-net 的网络中,与 Elasticsearch 在同一个网络中;
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置 Elasticsearch 的地址,因为 Kibana 已经与 Elasticsearch 在一个网络,因此可以用容器名直接访问 Elasticsearch;
  • -p 5601:5601:端口映射配置;

Kibana 启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

在这里插入图片描述
此时,在浏览器输入地址访问:http://192.168.101.65:5601,即可看到结果:

在这里插入图片描述

(2)Kibana中提供了一个 DevTools 界面:

在这里插入图片描述

这个界面中可以编写 DSL 来操作 Elasticsearch。并且对 DSL 语句有自动补全功能。

1.5.安装 IK 分词器

处理中文分词,一般会使用 IK 分词器,其 Github 地址为 https://github.com/medcl/elasticsearch-analysis-ik。

1.5.1.在线安装 IK 插件(较慢)

# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch

1.5.2.离线安装 IK 插件(推荐)

(1)查看数据卷目录
安装插件需要知道 Elasticsearch 的 plugins 目录位置,而我们用了数据卷挂载,因此需要查看 Elasticsearch 的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[
    {
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明 plugins 目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

(2)解压缩分词器安装包
下面我们需要把资料中的 IK 分词器解压缩,重命名为 IK:

在这里插入图片描述

(3)上传到 Elasticsearch 容器的插件数据卷中
也就是 /var/lib/docker/volumes/es-plugins/_data

在这里插入图片描述

(4)重启容器

# 重启容器
docker restart es
# 查看 Elasticsearch 日志
docker logs -f es

(5)测试
IK 分词器包含两种模式:

  • ik_smart:最少切分;
  • ik_max_word:最细切分;
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "黑马程序员学习java太棒了"
}

结果如下:

{
  "tokens" : [
    {
      "token" : "黑马",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "程序",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 5
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "太棒",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 7
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 8
    }
  ]
}

1.5.3.扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。所以我们的词汇也需要不断的更新,IK 分词器提供了扩展词汇的功能。

1)打开 IK 分词器 config 目录:

在这里插入图片描述

2)在 IKAnalyzer.cfg.xml 配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)新建一个 ext.dic(放在 IKAnalyzer.cfg.xml 配置文件所在目录),可以参考 config 目录下复制一个配置文件进行修改:

传智播客
奥力给

4)重启 Elasticsearch:

docker restart es
docker logs -f elasticsearch

在这里插入图片描述

日志中已经成功加载 ext.dic 配置文件。

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "传智播客Java就业超过90%,奥力给!"
}

结果如下:

{
  "tokens" : [
    {
      "token" : "传智播客",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "java",
      "start_offset" : 4,
      "end_offset" : 8,
      "type" : "ENGLISH",
      "position" : 1
    },
    {
      "token" : "就业",
      "start_offset" : 8,
      "end_offset" : 10,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "超过",
      "start_offset" : 10,
      "end_offset" : 12,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "90",
      "start_offset" : 12,
      "end_offset" : 14,
      "type" : "ARABIC",
      "position" : 4
    },
    {
      "token" : "奥力给",
      "start_offset" : 16,
      "end_offset" : 19,
      "type" : "CN_WORD",
      "position" : 5
    }
  ]
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用 Windows 记事本编辑!

1.4.4.总结

(1)分词器的作用是什么?

  • 创建倒排索引时对文档分词;
  • 用户搜索时,对输入的内容分词;

(1)IK 分词器有几种模式?

  • ik_smart:智能切分,粗粒度;
  • ik_max_word:最细切分,细粒度;

(1)IK 分词器如何拓展词条?如何停用词条?

  • 利用 config 目录的 IkAnalyzer.cfg.xml 文件添加拓展词典和停用词典;
  • 在词典中添加拓展词条或者停用词条;

2.索引库操作

索引库就类似数据库表,mapping 映射就类似表的结构。我们要向 Elasticsearch 中存储数据,必须先创建“库”和“表”。

2.1.mapping 映射属性

(1)mapping 是对索引库中文档的约束,常见的 mapping 属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、IP 地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为 true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

(2)例如下面的 json文档:

{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

对应的每个字段映射 (mapping):

  • age:类型为 integer;参与搜索,因此需要 index 为 true;无需分词器
  • weight:类型为 float;参与搜索,因此需要 index 为 true;无需分词器
  • isMarried:类型为 boolean;参与搜索,因此需要 index 为 true;无需分词器
  • info:类型为字符串,需要分词,因此是 text;参与搜索,因此需要 index 为true;分词器可以用 ik_smart
  • email:类型为字符串,但是不需要分词,因此是 keyword;不参与搜索,因此需要 index 为 false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为 float;参与搜索,因此需要 index 为 true;无需分词器
  • name:类型为 object,需要定义多个子属性:
    • name.firstName;类型为字符串,但是不需要分词,因此是 keyword;参与搜索,因此需要 index 为true;无需分词器
    • name.lastName;类型为字符串,但是不需要分词,因此是 keyword;参与搜索,因此需要 index 为true;无需分词器

2.2.索引库的 CRUD

这里我们统一使用 Kibana 编写 DSL 的方式来演示。

2.2.1.创建索引库和映射

(1)基本语法

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping 映射

格式:

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

(2)示例

PUT /heima
{
  "mappings": {
    "properties": {
      "info":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "email":{
        "type": "keyword",
        "index": "false"
      },
      "name":{
        "properties": {
          "firstName": {
            "type": "keyword"
          },
          "lastName": {
            "type": "keyword"
          }
        }
      }
    }
  }
}

结果如下:

{
  "acknowledged" : true,
  "shards_acknowledged" : true,
  "index" : "heima"
}

2.2.2.查询索引库

(1)基本语法

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

(2)格式

GET /索引库名

示例

在这里插入图片描述

2.2.3.修改索引库

(1)倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改 mapping。虽然无法修改 mapping 中已有的字段,但是却允许添加新的字段到 mapping 中,因为不会对倒排索引产生影响。

(2)语法说明

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}

(3)示例

在这里插入图片描述

2.2.4.删除索引库

语法:

  • 请求方式:DELETE
  • 请求路径:/索引库名
  • 请求参数:无

格式:

DELETE /索引库名

在 Kibana 中测试:

在这里插入图片描述

2.2.5.总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

3.文档操作

3.1.新增文档

语法:

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

示例:

POST /heima/_doc/1
{
  "info": "黑马程序员Java讲师",
  "email": "zy@itcast.cn",
  "name": {
    "firstName": "云",
    "lastName": "赵"
  }
}

响应:

在这里插入图片描述

3.2.查询文档

根据 restful 风格,新增是 post,查询应该是 get,不过查询一般都需要条件,这里我们把文档 id 带上。

语法:

GET /{索引库名称}/_doc/{id}

通过 Kibana 查看数据:

GET /heima/_doc/1

查看结果:

在这里插入图片描述

3.3.删除文档

删除使用 DELETE 请求,同样,需要根据 id 进行删除:

语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据 id 删除数据
DELETE /heima/_doc/1

结果:

在这里插入图片描述

3.4.修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档;
  • 增量修改:修改文档中的部分字段;

3.4.1.全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的 id 删除文档;
  • 新增一个相同 id 的文档;

注意:如果根据 id 删除时,id 不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

示例:

PUT /heima/_doc/1
{
    "info": "黑马程序员高级Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

3.4.2.增量修改

增量修改是只修改指定 id 匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

示例:

POST /heima/_update/1
{
  "doc": {
    "email": "ZhaoYun@itcast.cn"
  }
}

3.5.总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档 id {json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档 id
  • 删除文档:DELETE /{索引库名}/_doc/文档 id
  • 修改文档:
    • 全量修改:PUT /{索引库名}/_doc/文档 id {json文档 }
    • 增量修改:POST /{索引库名}/_update/文档 id {“doc”: {字段}}

4.RestAPI

Elasticsearch 官方提供了各种不同语言的客户端,用来操作 Elasticsearch。这些客户端的本质就是组装 DSL 语句,通过 http 请求发送给 Elasticsearch。官方文档地址:https://www.elastic.co/docs。其中的 Java Rest Client 又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client

在这里插入图片描述

本文主要介绍的是 Java HighLevel Rest Client 客户端 API。

4.1.导入 Demo 工程

4.1.1.导入数据

首先导入课前资料提供的数据库数据,数据结构如下:

CREATE TABLE `tb_hotel` (
  `id` bigint(20) NOT NULL COMMENT '酒店id',
  `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',
  `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',
  `price` int(10) NOT NULL COMMENT '酒店价格;例:329',
  `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',
  `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',
  `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',
  `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',
  `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',
  `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',
  `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',
  `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

4.1.2.导入项目

然后导入课前资料提供的项目 hotel-demo,项目结构如图:

在这里插入图片描述

4.1.3.mapping 映射分析

创建索引库,最关键的是 mapping 映射,而 mapping 映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用 ik_max_word

来看下酒店数据的索引库结构:

PUT /hotel
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"   // Elasticsearch 中的 id 默认是字符串类型
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword",
        "copy_to": "all"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "ik_max_word"
      }
    }
  }
}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度;
  • all:一个组合字段,其目的是将多字段的值利用 copy_to 合并,提供给用户搜索;

地理坐标说明:

在这里插入图片描述

copy_to 说明:

在这里插入图片描述

4.1.4.初始化 RestClient

在 Elasticsearch 提供的 API 中,与 Elasticsearch 一切交互都封装在一个名为 RestHighLevelClient 的类中,必须先完成这个对象的初始化,建立与 Elasticsearch 的连接。分为三步:
1)引入 Elasticsearch 的 RestHighLevelClient 依赖:

<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
    <version>7.12.1</version>
</dependency>

2)因为 SpringBoot 默认的 Elasticsearch 版本是 7.6.2,所以我们需要覆盖默认的 Elasticsearch 版本:

<properties>
    <elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

3)初始化RestHighLevelClient,初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.150.101:9200")
));

这里为了单元测试方便,我们创建一个测试类 HotelIndexTest,然后将初始化的代码编写在 @BeforeEach 注解修饰的方法中:

package cn.itcast.hotel;

import lombok.extern.slf4j.Slf4j;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.RestClient;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;

import java.io.IOException;

@Slf4j
public class HotelIndexTest {
    private RestHighLevelClient client;

    @Test
    void testInit() {
        log.info("client: {}", client);
    }

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.101.65:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

运行结果如下:

09-22 10:52:27.626 [main] INFO  cn.itcast.hotel.HotelIndexTest - client: org.elasticsearch.client.RestHighLevelClient@3fb6cf60

4.2.创建索引库

4.2.1.代码解读

创建索引库的 API 如下:

在这里插入图片描述

代码分为三步:

  • 1)创建 Request 对象。因为是创建索引库的操作,因此 Request 是 CreateIndexRequest。
  • 2)添加请求参数,其实就是 DSL 的 JSON 参数部分。因为 json 字符串很长,这里是定义了静态字符串常量 MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求,client.indices() 方法的返回值是 IndicesClient 类型,封装了所有与索引库操作有关的方法。

4.2.2.完整示例

在 hotel-demo 的 cn.itcast.hotel.constants 包下,创建一个类,定义 mapping 映射的 JSON 字符串常量:

package cn.itcast.hotel.constants;

public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"address\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"city\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"starName\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"location\":{\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";
}

在 hotel-demo 中的 HotelIndexTest 测试类中,编写单元测试,实现创建索引:

@Test
void createHotelIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2.准备请求的参数:DSL语句
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

4.3.删除索引库

删除索引库的 DSL 语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从 PUT 变为 DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在 Request 对象上。依然是三步走:

  • 1)创建 Request 对象。这次是 DeleteIndexRequest 对象
  • 2)准备参数,这里是无参
  • 3)发送请求,改用 delete 方法

在 hotel-demo 中的 HotelIndexTest 测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

有关 Junit 单元测试的知识可以查看 Java 基础——Junit 单元测试这篇文章。

4.4.判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的 DSL 是:

GET /hotel

因此与删除的 Java 代码流程是类似的。依然是三步走:

  • 1)创建 Request 对象。这次是 GetIndexRequest 对象
  • 2)准备参数,这里是无参
  • 3)发送请求,改用 exists 方法
@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

4.5.总结

JavaRestClient 操作 Elasticsearch 的流程基本类似。核心是 client.indices() 方法来获取索引库的操作对象。索引库操作的基本步骤:

  • 初始化 RestHighLevelClient
  • 创建 XxxIndexRequest。XXX 是 Create、Get、Delete
  • 准备 DSL(Create 时需要,其它是无参)
  • 发送请求,调用 RestHighLevelClient#indices().xxx() 方法,xxx是create、exists、delete

5.RestClient 操作文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化 RestHighLevelClient;
  • 我们的酒店数据在数据库,需要利用 IHotelService 去查询,所以注入这个接口;
package cn.itcast.hotel;

import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.service.IHotelService;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.io.IOException;
import java.util.List;

@SpringBootTest
public class HotelDocumentTest {
    @Autowired
    private IHotelService hotelService;

    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

5.1.新增文档

我们要将数据库的酒店数据查询出来,写入 Elasticsearch 中。

5.1.1.索引库实体类

数据库查询后的结果是一个 Hotel 类型的对象。结构如下:

@Data
@TableName("tb_hotel")
public class Hotel {
    @TableId(type = IdType.INPUT)
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String longitude;
    private String latitude;
    private String pic;
}

与我们的索引库结构存在差异:longitude 和 latitude 需要合并为 location。因此,我们需要定义一个新的类型,与索引库结构吻合:

package cn.itcast.hotel.pojo;

import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}

5.1.2.语法说明

新增文档的 DSL 语句如下:

POST /{索引库名}/_doc/1
{
    "name": "Jack",
    "age": 21
}

对应的 Java 代码如图:

在这里插入图片描述

可以看到与创建索引库类似,同样是三步走:

  • 1)创建 Request 对象
  • 2)准备请求参数,也就是 DSL 中的 JSON 文档
  • 3)发送请求

变化的地方在于,这里直接使用 client.xxx() 的 API,不再需要 client.indices() 了。

5.1.3.完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到 hotel 对象
  • hotel 对象需要转为 HotelDoc 对象
  • HotelDoc 需要序列化为 json 格式

因此,代码整体步骤如下:

  • 1)根据 id 查询酒店数据 Hotel;
  • 2)将 Hotel 封装为 HotelDoc;
  • 3)将 HotelDoc 序列化为 JSON;
  • 4)创建 IndexRequest,指定索引库名和 id;
  • 5)准备请求参数,也就是 JSON 文档;
  • 6)发送请求;

在 hotel-demo 的 HotelDocumentTest 测试类中,编写单元测试:

@Test
void testAddDocument() throws IOException {
    // 1.根据 id 查询酒店数据
    Hotel hotel = hotelService.getById(61083L);
    // 2.转换为文档类型
    HotelDoc hotelDoc = new HotelDoc(hotel);
    // 3.将 HotelDoc 转 json
    String json = JSON.toJSONString(hotelDoc);

    // 4.准备 Request 对象(注意:索引库中的 id 为 String 类型)
    IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
    // 5.准备 Json 文档
    request.source(json, XContentType.JSON);
    // 6.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

验证结果如下:

在这里插入图片描述

5.2.查询文档

5.2.1.语法说明

查询的 DSL 语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备 Request 对象
  • 发送请求

不过查询的目的是得到结果,解析为 HotelDoc,因此难点是结果的解析。完整代码如下:

在这里插入图片描述

可以看到,结果是一个 JSON,其中文档放在一个 _source 属性中,因此解析就是拿到 _source,反序列化为 Java 对象即可。与之前类似,也是三步走:

  • 1)准备 Request 对象。这次是查询,所以是 GetRequest;
  • 2)发送请求,得到结果。因为是查询,这里调用 client.get() 方法;
  • 3)解析结果,就是对 JSON 做反序列化;

5.2.2.完整代码

在 hotel-demo 的 HotelDocumentTest 测试类中,编写单元测试:

@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "61083");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();

    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}

输出结果如下:

HotelDoc(id=61083, name=上海滴水湖皇冠假日酒店, address=自由贸易试验区临港新片区南岛1, price=971, score=44, brand=皇冠假日, city=上海, starName=五钻, business=滴水湖临港地区, location=30.890867, 121.937241, pic=https://m.tuniucdn.com/fb3/s1/2n9c/312e971Rnj9qFyR3pPv4bTtpj1hX_w200_h200_c1_t0.jpg)

5.3.删除文档

删除的 DSL 为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从 DELETE 变成 GET,可以想象 Java 代码应该依然是三步走:

  • 1)准备 Request 对象,因为是删除,这次是 DeleteRequest 对象。要指定索引库名和 id;
  • 2)准备参数,无参;
  • 3)发送请求。因为是删除,所以是 client.delete() 方法;

在 hotel-demo 的 HotelDocumentTest 测试类中,编写单元测试:

@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

5.4.修改文档

5.4.1.语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据 ID 删除,再新增;
  • 增量修改:修改文档中的指定字段值;

在 RestClient 的 API 中,全量修改与新增的 API 完全一致,判断依据是 ID:

  • 如果新增时,ID 已经存在,则修改;
  • 如果新增时,ID 不存在,则新增;

这里不再赘述,我们主要关注增量修改。代码示例如图:

在这里插入图片描述

与之前类似,也是三步走:

  • 1)准备 Request 对象,这次是修改,所以是UpdateRequest;
  • 2)准备参数,也就是 JSON 文档,里面包含要修改的字段;
  • 3)更新文档,这里调用 client.update() 方法;

5.4.2.完整代码

在 hotel-demo 的 HotelDocumentTest 测试类中,编写单元测试:

@Test
    void testUpdateDocument() throws IOException {
        // 1.准备Request
        UpdateRequest request = new UpdateRequest("hotel", "61083");
        // 2.准备请求参数(即要更新的字段)
        request.doc(
                "price", 952,
                "starName", "四钻"
        );
        // 3.发送请求
        client.update(request, RequestOptions.DEFAULT);
    }

需要注意的是,由于此处并未考虑数据库的同步,因此此时数据库中的对应的数据并未发生变化。

5.5.批量导入文档

案例需求:利用 BulkRequest 批量将数据库数据导入到索引库中。步骤如下:

  • 利用 MyBatis-Plus 查询酒店数据;
  • 将查询到的酒店数据 (Hotel) 转换为文档类型数据 (HotelDoc);
  • 利用 JavaRestClient 中的 BulkRequest 批处理,实现批量新增文档;

5.5.1.语法说明

批量处理 BulkRequest,其本质就是将多个普通的 CRUD 请求组合在一起发送。其中提供了一个 add 方法,用来添加其他请求:

在这里插入图片描述

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此 Bulk 中添加了多个 IndexRequest,就是批量新增功能了。示例:

在这里插入图片描述

其实还是三步走:

  • 1)创建Request对象。这里是 BulkRequest
  • 2)准备参数。批处理的参数,就是其它 Request 对象,这里就是多个 IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为 client.bulk() 方法

我们在导入酒店数据时,将上述代码改造成 for 循环处理即可。

5.5.2.完整代码

在 hotel-demo 的 HotelDocumentTest 测试类中,编写单元测试:

@Test
void testBulkRequest() throws IOException {
    // 批量查询酒店数据
    List<Hotel> hotels = hotelService.list();

    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备参数,添加多个新增的Request
    for (Hotel hotel : hotels) {
        // 2.1.转换为文档类型HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 2.2.创建新增文档的Request对象
        request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
    }
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}

使用 GET /hotel/_search 命令在 Kibana 中查询索引库 hotel 中所有的文档:

在这里插入图片描述

5.6.小结

文档操作的基本步骤:

  • 初始化 RestHighLevelClient
  • 创建 XxxRequest。XXX 是 Index、Get、Update、Delete、Bulk
  • 准备参数(Index、Update、Bulk 时需要)
  • 发送请求。调用 RestHighLevelClient#.xxx() 方法,xxx 是 index、get、update、delete、bulk
  • 解析结果(Get 时需要)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2155798.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于单片机的智能温控风扇系统的设计

&#xff3b;摘 要&#xff3d; 设计一种基于单片机的智能温控风扇系统&#xff0c;系统由 STC 系列的 51 单片机 、 温度传感器 、 LED 数码管和风扇等模块组成。 本系统具有对外界温度感知以及对感知数据进行分析处理 、 智能调节等功能&#xff0c;避免因温度过高而产生…

【全部更新】2024华为杯数学建模研赛F题思路代码文章全国研究生数学建模-X射线脉冲星光子到达时间建模

截止9.22 14:00 已更新全部文章内容完整求解代码(正版授权) ### https://docs.qq.com/doc/DVVBUREF2SmFhRUl3X射线脉冲星光子到达时间建模 摘要 脉冲星是一类高速自转的中子星&#xff0c;其自转形成规律性脉冲信号&#xff0c;类似于“宇宙中的灯塔”&#xff0c;因此被认为是…

鸿蒙 WebView 如何 Debug

前置&#xff1a; hdc chrome //----------------------------------------------------------------------------------------------- hdc shell cat /proc/net/unix | grep devtools 0: 00000002 0 10000 1 1 81134005 webview_devtools_remote_62479exit执行&…

[001-02-001].第2节:java开发环境搭建

4.1.书籍推荐&#xff1a; 4.2.人机交互方式 1.图形化界面(Graphical User Interface GUI)这种方式简单直观&#xff0c;使用者易于接受&#xff0c;容易上手操作2.命令行方式(Command Line Interface CLI)&#xff1a;需要有一个控制台&#xff0c;输入特定的指令&#xff0c…

828华为云征文|云服务器Flexus X实例|MacOS系统-宝塔部署Nuxt项目

文章目录 1. Flexus云服务器X实例1.1 与Flexus应用服务器L实例相比具备以下优势1.2 服务器的详细配置 2.宝塔部署Nuxt项目2.1 登录实例2.1 宝塔面板 3. Nuxt 项目与部署3.1 Nuxt3.2创建Nuxt项目3.3 部署3.4 部署成功 4.结语 1. Flexus云服务器X实例 华为云的Flexus云服务是为中…

股指期权交易详细基础介绍

股指期权是期权市场中的一种特定类型&#xff0c;其标的资产为股票指数。简而言之&#xff0c;它允许投资者在未来某个特定时间&#xff0c;以预先约定的价格&#xff0c;买入或卖出股票指数的权利。在中国&#xff0c;已上市的股指期权包括上证50、沪深300和中证1000股指期权&…

【C++ Primer Plus习题】17.5

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: #include <iostream> #include <fstream> #include <…

数据库系统基础概述

文章目录 前言一、数据库基础概念 1.数据库系统的组成2.数据模型3.数据库的体系结构二、MySQL数据库 1.了解MySQL2.MySQL的特性3.MySQL的应用场景总结 前言 MySQL数据库是一款完全免费的产品&#xff0c;用户可以直接从网上下载使用&#xff0c;不用花费任何费用。这点对于初学…

react开发环境搭建

文章目录 准备工作创建 React 项目使用 create-react-app 创建 React 项目使用 Vite 创建 React 项目启动项目效果安装出现的情况 react项目文件讲解1. 项目根目录2. 其他可能的目录和文件3. 配置文件 准备工作 Node.js 安装方法&#xff1a; 方式一&#xff1a;使用 NVM 安装…

制作一个rabbitmq-sdk以及rabbitmq消费者实现定时上下线功能

目录结构 pom.xml <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">&l…

力扣中等 33.搜索旋转排序数组

文章目录 题目介绍题解 题目介绍 题解 首先用 153. 寻找旋转排序数组中的最小值 的方法&#xff0c;找到 nums 的最小值的下标 i。 然后分类讨论&#xff1a; 如果 target>nums[n−1]&#xff0c;在 [0,i−1] 中二分查找 target。 如果 target≤nums[n−1]&#xff0c;那…

利士策分享,家庭内耗:隐形的风暴,无声的侵蚀

利士策分享&#xff0c;家庭内耗&#xff1a;隐形的风暴&#xff0c;无声的侵蚀 在温馨的灯光下&#xff0c;家本应是我们心灵的港湾&#xff0c;是疲惫时最坚实的依靠。 然而&#xff0c;当家庭内部出现裂痕&#xff0c;无形的内耗便如同冬日里的寒风&#xff0c;悄无声息地…

11年408考研真题解析-计算机网络

第一题&#xff1a; 解析&#xff1a;网络层虚电路服务和数据报服务 传输服务只有&#xff1a;有连接可靠和无连接不可靠两种&#xff0c;直接排除BC。 网络层指的是IP协议&#xff0c;由图二可知&#xff1a;运输层&#xff0c;网际层&#xff0c;网络接口层唯一有连接可靠的协…

Spark MLlib实践指南:从大数据推荐系统到客户流失预测的全流程建模

问题一 背景&#xff1a; 本题目基于用户数据&#xff0c;将据数据切分为训练集和验证集&#xff0c;供建模使用。训练集与测试集切分比例为8:2。 数据说明&#xff1a; capter5_2ml.csv中每列数据分别为userId , movieId , rating , timestamp。 数据&#xff1a; capte…

详解 Linux 系统下的进程(下)

目录 一.进程控制 1.进程创建 a.Linux 系统中&#xff0c;如何创建一个进程&#xff1f; b.进程创建成功后&#xff0c;Linux 底层会为其做些什么&#xff1f; 2.进程终止 a.什么是进程终止&#xff1f; b.进程终止的方法有哪些&#xff1f; c.exit 与 _exit的区别 3.…

通过logstash同步elasticsearch数据

1 概述 logstash是一个对数据进行抽取、转换、输出的工具&#xff0c;能对接多种数据源和目标数据。本文介绍通过它来同步elasticsearch的数据。 2 环境 实验仅仅需要一台logstash机器和两台elasticsearch机器&#xff08;elasticsearch v7.1.0&#xff09;。本文用docker来模…

NLP 序列标注任务核心梳理

句向量标注 用 bert 生成句向量用 lstm 或 bert 承接 bert 的输出&#xff0c;保证模型可以学习到内容的连续性。此时 lstm 输入形状为&#xff1a; pooled_output.unsqueeze(0) (1, num_sentence, vector_size) 应用场景 词性标注句法分析 文本加标点 相当于粗粒度的分词任…

实时同步 解决存储问题 sersync

目录 1.sersync服务 2.sersync同步整体架构 ​编辑 3.rsync服务准备 4.sersync部署使用 5.修改配置文件 6.启动sersync 7.接入nfs服务 8.联调测试 1.sersync服务 sersync服务其实就是由两个服务组成一个是inotify服务和rsync服务组成 inotify服务用来监控那个…

Linux 文件系统(上)

目录 一.预备阶段 1.认识文件 2.OS对内存文件的管理 3.C库函数和系统调用接口 a.C库函数——fopen b.系统调用接口——open 二.理解文件描述符 1.一张图&#xff0c;详解文件描述符的由来 2.fd的分配规则 3.从fd的角度理解FILE 三.重定向和缓冲区 1.前置知识——理解…

网络安全-CSRF

一、环境 DVWA网上找 二、简单介绍 这个漏洞很早之前了&#xff0c;但是为了避免大家在面试等等的时候被问到&#xff0c;这里给大家温习一下 CSRF全程是没有黑客参与的&#xff0c;全程都是用户自己在操作 三、环境演练 这个是DVWA的提交表单页面&#xff0c;我这里伪造…