时序预测|基于灰狼优化LightGBM的时间序列预测Matlab程序GWO-LightGBM 单变量和多变量 含基础模型

news2024/11/16 16:24:34

时序预测|基于灰狼优化LightGBM的时间序列预测Matlab程序GWO-LightGBM 单变量和多变量 含基础模型

文章目录

  • 一、基本原理
      • 原理概述
      • 流程
      • 注意事项
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

一、基本原理

时序预测中使用灰狼优化(GWO)结合LightGBM的流程大致如下:

原理概述

  1. 灰狼优化(GWO):模拟灰狼捕猎行为的优化算法,通过对狼群的领导者(猎手)进行模拟搜索来优化模型参数。
  2. LightGBM:一种高效的梯度提升树算法,适用于大规模数据集,尤其是在特征维度高时表现优秀。

流程

  1. 数据准备

    • 收集并预处理时间序列数据,分为训练集和测试集。
    • 对数据进行平稳性检验和特征工程(如滑动窗口法)。
  2. 模型构建

    • 基础模型:可以使用传统的时序预测模型(如ARIMA、SARIMA等)进行基线比较。
    • LightGBM模型:设定初步的LightGBM参数。
  3. 优化步骤

    • 初始化狼群:生成初始的狼群位置(即参数组合)。
    • 评估适应度:使用交叉验证计算每组参数下LightGBM的预测性能(如MSE、RMSE)。
    • 更新位置:根据适应度和GWO算法更新狼群的位置,模拟猎捕过程。
  4. 参数优化

    • 在一定的迭代次数内重复评估和更新位置,最终找到最优参数组合。
  5. 模型训练与评估

    • 使用优化后的参数训练LightGBM模型。
    • 在测试集上评估模型性能,比较基础模型和GWO-LightGBM的效果。
  6. 结果分析

    • 可视化预测结果与实际值的比较。
    • 分析不同参数对模型性能的影响。

注意事项

  • 在实际应用中,确保数据预处理充分,避免信息泄露。
  • 调整GWO和LightGBM的超参数以获得更好的性能。
  • 考虑多变量预测时,特征选择与组合的重要性。

二、实验结果

1.输入多个特征,输出单个变量,多变量回归预测;

2.excel数据,前6列输入,最后1列输出,运行主程序即可,所有文件放在一个文件夹;

3.命令窗口输出R2、MSE、MAE;

4.可视化:代码提供了可视化工具,用于评估模型性能,包括真实值与预测值的收敛图、对比图、拟合图、残差图。
GWO-LightGBM单变量时序预测结果
在这里插入图片描述
GWO-LightGBM多变量时序预测结果
在这里插入图片描述
LightGBM多变量时序预测结果
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');

%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2154276.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【问题随记】在使用 AuthenticationManager 的时候,出现循环依赖问题 —— `java.lang.StackOverflowError`

问题随记 在使用 AuthenticationManager 的时候,出现循环依赖问题 —— java.lang.StackOverflowError,查资料查了两天半,终于找到原因。 2024-06-16T17:54:19.48708:00 ERROR 20672 --- [nio-8789-exec-1] o.a.c.c.C.[.[.[/].[dispatcherS…

猫咪检测系统源码分享

猫咪检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vision …

AI健身之俯卧撑计数和姿态矫正-角度估计

在本项目中,实现了Yolov7-Pose用于人体姿态估计。以下是如何在Windows 11操作系统上设置和运行该项目的详细步骤。 环境准备 首先,确保您的计算机已经安装了Anaconda。Anaconda是一个开源的Python发行版本,它包含了conda、Python以及众多科…

静态链表:实现、操作与性能优势【算法 16】

静态链表:实现、操作与性能优势 在算法和数据结构的探索中,链表作为一种基础且灵活的数据结构,广泛应用于各种场景。然而,在算法竞赛或需要高效内存管理的环境中,传统的动态链表可能会因为内存分配和释放的开销而影响性…

完整版:NacosDocker 安装

第一步:先直接通过命令安装 Nacos docker run --name nacos2.2.3 -d -p 8848:8848 -e MODEstandalone f151dab7a111 第二步:创建 Docker 挂载目录 # 创建 log 目录 mkdir -p /root/nacos 第三步:将 Docker 容器的文件复制到挂载目录中 …

C++之Person类

首先设置头文件&#xff0c;将题目中的要求完成。 #include <iostream>using namespace std;class Person { public:Person();Person(string name, int id, string address);~Person();void setPerson(string name, int id, string address);void setName(string name);…

python新手的五个练习题

代码 # 1. 定义一个变量my_Number,将其设置为你的学号&#xff0c;然后输出到终端。 my_Number "20240001" # 假设你的学号是20240001 print("学号:", my_Number) # 2. 计算并输出到终端:两个数(例如3和5)的和、差、乘积和商。 num1 3 num2 5 print(&…

计算机的错误计算(一百)

摘要 探讨 与 的计算精度问题。 从计算机的错误计算&#xff08;九十九&#xff09;知&#xff0c;运算 与 均被列在IEEE754-2019中。然而&#xff0c;似乎并没有哪种语言实现内置了第二个运算。 例1. 计算 与 不妨在Python 3.12.5 下计算&#xff0c;则有 然而&#…

华为HarmonyOS地图服务 5 - 利用UI控件和手势进行地图交互

场景介绍 本章节将向您介绍如何使用地图的手势。 Map Kit提供了多种手势供用户与地图之间进行交互,如缩放、滚动、旋转和倾斜。这些手势默认开启,如果想要关闭某些手势,可以通过MapComponentController类提供的接口来控制手势的开关。 接口说明 以下是地图的控件和手势相…

设计模式之代理

一、代理设计模式概念 代理模式 (Proxy) 是一种结构型设计模式&#xff0c; 为其他对象提供一种代理以控制对这个对象的访问。 代理模式介绍了一种访问对象的间接等级。一个远程代理可以隐藏一个对象在不同地址空间的细节。一个虚拟代理可以根据需要最优化创建对象的开销。而安…

黄酮类化合物及其衍生物生物合成的进展:构建酵母细胞工厂的系统策略-

Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell FactoriesCli 黄酮类化合物及其衍生物生物合成的进展&#xff1a;构建酵母细胞工厂的系统策略 摘要 黄酮类化合物是一类重要的天然多酚化合物&#xff0c;具有…

ESP32-WROOM-32 [创建AP站点-客户端-TCP透传]

简介 基于ESP32-WROOM-32 开篇(刚买)&#xff0c; 本篇讲的是基于固件 ESP32-WROOM-32-AT-V3.4.0.0&#xff08;内含用户指南, 有AT指令说明&#xff09;的TCP透传设置与使用 设备连接 TTL转USB线, 接ESP32 板 的 GND&#xff0c;RX2&#xff0c; TX2 指令介绍 注意,下面指…

【iOS】KVC的学习

【iOS】KVC的学习 文章目录 【iOS】KVC的学习前言KVC定义KVC设值KVC取值KVC使用keyPathKVC处理异常处理nil异常 KVC的一些应用修改动态的设置值实现高阶的消息传递 小结 前言 笔者简单学习了有关与KVC的相关内容&#xff0c;这里写一篇博客简单介绍一下相关内容。 KVC 定义 KV…

从零到一,监控网关上网设置教程

要让监控网关成功连接互联网&#xff0c;需要正确配置网络设置。监控网关通常位于本地局域网&#xff08;LAN&#xff09;或广域网&#xff08;WAN&#xff09;中&#xff0c;用于连接摄像头、传感器等监控设备&#xff0c;并通过网络上传数据到远程服务器或云平台。以下是监控…

计算机毕业设计 社区医疗服务系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

【GMNER】Grounded Multimodal Named Entity Recognition on Social Media

Grounded Multimodal Named Entity Recognition on Social Media 动机解决方法特征抽取多模态索引设计索引生成框架EncoderDecoder 实体定位、实体-类型-区域三元组重建 出处&#xff1a;ACL2023 论文链接&#xff1a;https://aclanthology.org/2023.acl-long.508.pdf code链接…

windows安装docker 本地打包代码

参考文章1&#xff1a;https://gitcode.csdn.net/65ea814b1a836825ed792f4a.html 参考文章2&#xff1a; Windows 安装docker&#xff08;详细图解&#xff09;-CSDN博客 一 下载 Docker Desktop 在官网上下载 Docker Desktop&#xff0c;可以从以下链接下载最新版本&#x…

重生之我们在ES顶端相遇第15 章 - ES 的心脏-倒排索引

文章目录 前言为什么叫倒排索引数据结构如何生成如何查询TF、IDF参考文档 前言 上一章&#xff0c;简单介绍了 ES 的节点类型。 本章&#xff0c;我们要介绍 ES 中非常重要的一个概念&#xff1a;倒排索引。 ES 的全文索引就是基于倒排索引实现的。 本章内容建议重点学习&…

基于python的api扫描器系统的设计与实现

&#x1f497;博主介绍&#x1f497;&#xff1a;✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌ 温馨提示&#xff1a;文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :) Java精品实战案例《700套》 2025最新毕业设计选题推荐…

『功能项目』QFrameWork拾取道具UGUI【69】

本章项目成果展示 我们打开上一篇68QFrameWork扔到地上UGUI的项目&#xff0c; 本章要做的事情是实现当物品在地上时&#xff0c;点击物品将对应物品转移到道具栏中 制作一个提示UI界面 添加Button组件设置为点击即将父物体隐藏 拖拽到文件夹中在场景中删除 创建脚本&#xf…