Sparse Point Registration (SPR)是一篇2017年的点云配准算法,该算法的主要目的是对稀疏点云进行配准,并且取得了不错的成果和突破。本文一方面是对SPR配准算法模型进行了简单的原理解析以及附加代码实现,另一方面是对之前工作的总结,也算水篇博文,接下来的工作主要就是分割和光流预测方面的学习了。
一.算法模型概述
1.算法背景
所谓稀疏点云就是点数稀少的点云模型,有时我们需要用到一些物体上的关键点来和目标模型进行配准,计算一些关键指标。而传统的点云配准算法要求待配准的两片点云数量级相当,并且还包括粗配准和精配准两个阶段。经实验可得,传统点云配准算法在稀疏点云配准上表现较差,因此稀疏点云配准十分关键。
2.算法模型
SPR算法不需要进行粗配准就可以实现效果较好的稀疏点云配准效果,该算法的核心思想主要包括扰动、迭代、细化三个部分。SPR算法模型包括以下步骤:
- 初始化目标模型点云数据A,稀疏点云数据B,最大迭代次数MaxIterations,配准误差阈值Threshold、扰动次数P
- 根据点云Size和高斯分布计算当前迭代的扰动量(扰动量随着迭代次数不断减小,最后减小到零)获取P个扰动扰动变换矩阵,然后对当前B点云进行