一、本文介绍
作为入门性第一篇,这里介绍了ECA注意力在YOLOv8中的使用。包含ECA原理分析,ECA的代码、ECA的使用方法、以及添加以后的yaml文件及运行记录。
二、ECA原理分析
ECA官方论文地址:ECA文章
ECA的pytorch版代码:ECA的pytorch代码
ECA注意力机制:深度卷积神经网络的高效通道注意力机制。ECA机制是对SE网络进行了改进,将SE中使用的FC层,改为1×1卷积学习通道注意信息。感觉一新的得算是这个自适应卷积核的大小的处理方法:其ECA模块的原理结构如下图所示。
相关代码:
ECA注意力的代码,如下。
class ECA(nn.Module): # Efficient Channel Attention module
def __init__(self, c, b=1, gamma=2):
super(ECA, self).__init__()
t = int(abs((math.log(c, 2) + b) / gamma))
k = t if t % 2 else t + 1
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv1d(1, 1, kernel_size=k, padding=int(k/2), bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.avg_pool(x)
out = self.conv1(out.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
out = self.sigmoid(out)
return out * x
四、YOLOv8中ECA使用方法
1.YOLOv8中添加ECA模块,首先在ultralytics/nn/modules/conv.py最后添加ECA模块的代码。
2.在conv.py的开头__all__ = 内添加ECA模块的类别名(我这里就是ECA)
3.在同级文件夹下的__init__.py内添加以下截图内容:
4.在ultralytics/nn/tasks.py进行ECA注意力机制的注册,以及在YOLOv8的yaml配置文件中添加ECA即可。
首先打开task.py文件,按住Ctrl+F,输入parse_model进行搜索。找到parse_model函数。在其最后一个else前面添加以下注册代码:(本文续接上篇文章,加在了CBAM的位置)
elif m in {CBAM,ECA}:#添加注意力模块,没有CBAM的,将CBAM删除即可
c1, c2 = ch[f], args[0]
if c2 != nc:
c2 = make_divisible(min(c2, max_channels) * width, 8)
args = [c1, *args[1:]]
然后,就是新建一个名为YOLOv8_ECA.yaml的配置文件:(路径:ultralytics/cfg/models/v8/YOLOv8_ECA.yaml)
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call CPAM-yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, ECA, [1024,1024]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 10], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
其中参数中nc,由自己的数据集决定。本文测试,采用的coco8数据集,有80个类别。
在根目录新建一个train.py文件,内容如下
from ultralytics import YOLO
# 加载一个模型
model = YOLO('ultralytics/cfg/models/v8/YOLOv8_ECA.yaml') # 从YAML建立一个新模型
# 训练模型
results = model.train(data='ultralytics/cfg/datasets/coco8.yaml', epochs=1,imgsz=640,optimizer="SGD")
训练输出:
五、总结
以上就是ECA的原理及使用方式,但具体ECA注意力机制的具体位置放哪里,效果更好。需要根据不同的数据集做相应的实验验证。希望本文能够帮助你入门YOLO中注意力机制的使用。