LLM - 理解 多模态大语言模型(MLLM) 的 指令微调(Instruction-Tuning) 与相关技术 (四)

news2024/11/15 15:49:38

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/142237871

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


完备(Full-Fledged) 的 多模态大语言模型(MLLM) 经历 3 个阶段的训练,即 预训练(Pre-training)、指令微调(Instruction-Tuning) 和 对齐调优(Alignment Tuning)。每个训练阶段都需要不同类型的数据,并且实现不同的目标。本篇介绍,指令微调(Instruction-Tuning) 部分。

指令微调 (Instruction-Tuning)

预训练(Pre-Training) 是 对齐不同模态和学习多模态的世界知识。指令(Instruction) 就是对于任务的描述,指令微调,教会模型更好地,理解用户的指令,并且完成所需的任务。通过这种方式调优,大语言模型(LLM) 可以通过跟随新的指令,泛化到未见过的任务,从而提高 零样本(Zero-Shot) 性能。

指令微调类似于多任务提示工程,包括:指令样本格式训练目标构建指令数据的方法常用数据集

预训练微调(有监督微调)、提示词工程、指令微调的差别,如图:

Instruction Tuning

指令样本格式简化的模板,构建多模态 指令(Instruction) 数据。

  • <instruction> 是任务的文本描述。
  • {<image>, <text>}<output> 是数据样本的输入和输出。

请注意,输入中的<text>在某些数据集中可能缺失,例如,仅包含<image>的图片描述数据集。

格式如下:

Instruction: <instruction> 
Input: {<image>, <text>} 
Response: <output>

指令模板可以推广到多轮对话的方式。

训练目标的 Loss 函数, R i R_{i} Ri 是 回答(Response), I I I 是 指令(Instruction), θ \theta θ 是参数,即:
L ( θ ) = − ∑ i = 1 N l o g   p ( R i ∣ I , R < i ; θ ) L(\theta)=-\sum_{i=1}^{N}log\ p(R_{i}|I,R_{<i};\theta) L(θ)=i=1Nlog p(RiI,R<i;θ)
第一阶段预训练数据与第二阶段的指令微调的 Loss 公式是相同的。

指令数据的格式非常灵活,任务描述也是多样化,因此收集数据样本,通常更加困难且成本更高,其中 3 种典型的大规模收集指令数据的方法,即数据调整(Data Adaptation)自指令(Self-Instruction)数据混合(Data Mixture)

数据调整 (Data Adaptation):将已有的 VQA 数据集中,图像保持不变,Query 通过 GPT 扩写,作为新的 <instruction> ,Answer 也通过 GPT 扩写,作为新的 <output>,扩写保存内容正确不变,更符合人类的语言习惯。

参考视觉问答(VQA)数据集的指令模板,<Image>{Question}分别是原始 VQA 数据集中的图片和问题,即:

<Image> {Question}
<Image> Question: {Question}
<Image> {Question} A short answer to the question is
<Image> Q: {Question} A:
<Image> Question: {Question} Short answer:
<Image> Given the image, answer the following question with no more than three words. {Question}
<Image> Based on the image, respond to this question with a short answer: {Question}. Answer:
<Image> Use the provided image to answer the question: {Question} Provide your answer as short as possible:
<Image> What is the answer to the following question? "{Question}"
<Image> The question "{Question}" can be answered using the image. A short answer is

自指令(Self-Instruction):解决 多轮(Multiple Rounds) 对话场景,使用 大语言模型(LLM),通过少量手工标注的样本,生成文本 指令遵循(Instruction-Following) 数据。具体来说,少量指令遵循的样本被手工制作成 示例(Demonstrations),之后 ChatGPT 被提示使用这些示例,作为指导,来生成更多的指令样本。LLaVA 扩展至多模态领域,通过将图像转换成描述文本和边界框,并且,提示 GPT-4 使用要求和示例,指导和生成新的数据。通过这种方式,构建多模态指令数据集,称为 LLaVA-Instruct-150k。

通过 自指令(Self-Instruction) 生成的数据集:

  • 输入/输出模态: I I I:图像, T T T:文本, V V V:视频, A A A:音频
  • 数据组成:M-TS-T分别表示多轮和单轮

相关数据集如下:

Dataset

数据混合(Data Mixture):不是很常用的方式。除了多模态指令数据之外,仅语言的 用户-助手(User-Assistant) 对话数据,也可以用来提高对话能力和指令遵循能力。LaVIN 通过从仅语言和多模态数据中,随机抽样直接构建一个小批量。MultiInstruct 探索了不同的训练策略,这些策略涉及单一模态和多模态数据的融合,包括 混合指令调整(结合这两种类型的数据并随机打乱) 和 顺序指令调整(先文本数据,然后是多模态数据)。

指令微调样本的数据质量与数量同等重要。预先在 大规模且嘈杂 的图文对上训练的模型,表现并不如在 较小且干净 的数据集上预训练的模型。较少且质量更高的指令微调数据,可以实现更好的性能。对于数据过滤,构建评估数据质量的指标,以及自动过滤劣质视觉-语言数据的方法。数据质量的 2 个标准:

  • 提示多样性(Prompt Diversity),已经发现指令的多样性,对于模型性能至关重要,多样化的提示有助于提高模型性能和泛化能力。
  • 任务覆盖范围(Task Coverage),在训练数据涉及的任务方面,发现 视觉推理(Vision Reasoning) 任务,在提升模型性能方面优于描述和问答任务,增强指令的复杂性,可能比增加任务多样性和增加细粒度的空间注释更有效。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2150561.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java知识点小结3:内存回收

文章目录 对象引用强引用软引用&#xff08;SoftReference&#xff09;弱引用&#xff08;WeakReference&#xff09;考一考 虚引用&#xff08;PhantomReference&#xff09;总结 垃圾回收新生代老年代永生代 内存管理小技巧尽量使用直接量使用StringBuilder和StringBuffer进行…

Vue学习记录之六(组件实战及BEM框架了解)

一、BEM BEM是一种前端开发中常用的命名约定&#xff0c;主要用于CSS和HTML的结构化和模块化。BEM是Block、Element、Modifier的缩写。 Block&#xff08;块&#xff09;&#xff1a;独立的功能性页面组件&#xff0c;可以是一个简单的按钮&#xff0c;一个复杂的导航条&…

A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation

FAM: Feature Aggregation Module&#xff0c;Circle with R represents removing feature maps of non-selected categories 辅助信息 权重有1.3G&#xff0c;不建议复现

neo4j关系的创建删除 图的删除

关系的创建和删除 关系创建 CREATE (:Person {name:"jack"})-[:LOVE]->(:Person {name:"Rose"})已有这个关系时&#xff0c;merge不起效果 MERGE (:Person {name:"Jack" })-[:LOVE]->(:Person {name:"Rose"})关系兼顾节点和关…

功耗中30分钟下载场景对平均电流标准的影响评估

下载场景的测试数据: 测试结论:相同场景下,有应用下载安装跟没应用下载安装,平均电流相差90-140mA左右 查看数据:下载场景的平均增量电流 (227+279) / 2 - 136 = 117 mA 理论的量化数据影响 根据当前的测试数据:静置待机平均电流 136 mA,下载场景平均电流增量 117mA, …

相亲交易系统源码详解与开发指南

随着互联网技术的发展&#xff0c;越来越多的传统行业开始寻求线上转型&#xff0c;其中就包括婚恋服务。传统的相亲方式已经不能满足现代人快节奏的生活需求&#xff0c;因此&#xff0c;开发一款基于Web的相亲交易系统显得尤为重要开发者h17711347205。本文将详细介绍如何使用…

电气自动化入门05:三相异步电动机的正反转点动控制电路

视频链接&#xff1a;3.2 电工知识&#xff1a;三相异步电动机的正反转点动控制电路_1_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1PJ41117PW?p6&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5 1.断路器及其选型 1.1断路器定义、分类、表示符号 1.2.断路器功能、…

Vision Transform—用于大规模图像分类的Transformers架构

VIT — 用于大规模图像识别的 Transformer 论文题目&#xff1a;AN IMAGE IS WORTH 16X16 WORDS:TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE。 官方代码&#xff1a;https://github.com/google-research/vision_transformer 引言与概述 Vision Transformer&#xff08;ViT&…

虚拟机vaware中cpu设置跑满大核

首先&#xff0c;大核速度快&#xff0c;并且在资源紧张时大核优先&#xff0c;小核甚至是闲着围观大核跑满。其次&#xff0c;遇到经常切换操作虚拟机和win11的使用场景&#xff0c;切换核心本身也会造成一点卡顿&#xff0c;降低虚拟机里操作流畅度。另外&#xff0c;13代在你…

【linux】4张卡,坏了1张,怎么办?

先禁用这张卡 grub 禁用&#xff0c;防止加载驱动 禁用这张卡的 PCI # 禁用 PCI 设备 0000:b1:00.0 (NVIDIA GPU) ACTION"add", SUBSYSTEM"pci", ATTR{vendor}"0x10de", KERNELS"0000:b1:00.0", RUN"/bin/sh -c echo 0000:b1:00…

vue part 10

vue-resource 在vue1.0时代讲的比较多&#xff0c;是vue.插件库&#xff0c; import vueResource from vue-resourceVue.use(vueResource) 在vc和vm中会多出如下F12代码即&#xff0c;$http:() 他的用法和返回值和axios一模一样&#xff0c;但是不常维护了 插槽 默认插槽 …

11年计算机考研408-数据结构

设执行了k次。 解析&#xff1a; d要第一个出&#xff0c;那么abc先入栈&#xff0c;d入栈然后再出栈&#xff0c;这前面是一个固定的流程&#xff0c;后面就很灵活了&#xff0c;可以ecba&#xff0c;ceba&#xff0c;cbea&#xff0c;cbae。 答案是4个序列。 解析&#xff1a…

解决redis缓存击穿问题之布隆过滤器

布隆过滤器 1. 什么是布隆过滤器 布隆过滤器&#xff08;Bloom Filter&#xff09;是一个空间效率很高的数据结构&#xff0c;用于判断一个元素是否在一个集合中。布隆过滤器的核心思想是利用位数组和一系列随机映射函数&#xff08;哈希函数&#xff09;来快速判断某个元素是…

基于SpringBoot+Vue+MySQL的网上租赁系统

系统展示 用户前台界面 管理员后台界面 系统背景 在当前共享经济蓬勃发展的背景下&#xff0c;网上租赁系统作为连接租赁双方的重要平台&#xff0c;正逐步改变着人们的消费观念和生活方式。通过构建一个基于SpringBoot、Vue.js与MySQL的网上租赁系统&#xff0c;我们旨在为用户…

LangChain 和 Elasticsearch 加速构建 AI 检索代理

作者&#xff1a;来自 Elastic Joe McElroy, Aditya Tripathi, Serena Chou Elastic 和 LangChain 很高兴地宣布发布新的 LangGraph 检索代理模板&#xff0c;旨在简化需要代理使用 Elasticsearch 进行代理检索的生成式人工智能 (GenAI) 代理应用程序的开发。此模板预先配置为使…

基于机器学习的癌症数据分析与预测系统实现,有三种算法,bootstrap前端+flask

研究背景 癌症作为全球范围内最主要的死亡原因之一&#xff0c;已成为当代医学研究和公共健康的重大挑战。据世界卫生组织&#xff08;WHO&#xff09;的统计&#xff0c;癌症每年导致全球数百万人的死亡。随着人口老龄化、环境污染和生活方式的改变&#xff0c;癌症的发病率逐…

Pytorch学习---基于经典网络架构ResNet训练花卉图像分类模型

基于经典网络架构训练图像分类模型 导包 import copy import json import time import torch from torch import nn import torch.optim as optim import torchvision import os from torchvision import transforms, models, datasets import numpy as np import matplotlib.…

【使用Hey对vllm接口压测】模型并发能力

使用Hey对vllm进行模型并发压测 docker run --rm --networkknowledge_network \registry.cn-shanghai.aliyuncs.com/zhph-server/hey:latest \-n 200 -c 200 -m POST -H "Content-Type: application/json" \-H "Authorization: xxx" \-d {"model"…

【类型黑市】指针

大家好我是#Y清墨&#xff0c;今天我要介绍的是指针。 意义 指针就是存放内存地址的变量。 分类 因为变量本身是分类型的&#xff0c;我们学过的变量类型有 int, long long, char, double, string, 甚至还有结构体变量。 同样&#xff0c;指针也分类型&#xff0c;如果指针指向…

云韧性,现代云服务不可或缺的组成部分

韧性&#xff0c;一个物理学概念&#xff0c;表示材料在变形或者破裂过程中吸收能量的能力。韧性越好&#xff0c;则发生脆性断裂的可能性越小。 如今&#xff0c;韧性也延伸到企业特质、产品特征等之中&#xff0c;用于形容企业、产品乃至服务的优劣。同样&#xff0c;随着云…