Java知识点小结3:内存回收

news2024/9/21 0:18:36

文章目录

  • 对象引用
    • 强引用
    • 软引用(SoftReference)
    • 弱引用(WeakReference)
      • 考一考
    • 虚引用(PhantomReference)
    • 总结
  • 垃圾回收
    • 新生代
    • 老年代
    • 永生代
  • 内存管理小技巧
    • 尽量使用直接量
    • 使用StringBuilder和StringBuffer进行字符串拼接
    • 尽早释放无用对象的引用
    • 尽量少用静态变量
    • 避免在循环中创建对象
    • 缓存经常使用的对象
    • 避免使用finalize()方法
    • 使用SoftReference

注:本文是对《疯狂Java面试讲义》的小结。

在这里插入图片描述

对象引用

Java通过 new 关键字来创建对象实例,JVM会在堆内存中为对象分配空间。当对象失去引用时,JVM的垃圾回收机制会自动清理对象,回收内存空间。

可以把对象的引用关系理解为有向图。如果某个对象在图中处于不可达状态,则认为该对象不再被引用。

Java的对象引用方式有:

  • 强引用
  • 软引用
  • 弱引用
  • 虚引用

下面举例说明各种引用方式。

准备:已知类 Person 定义如下:

public class Person {
    private String name;
    private int age;
    ......
}

强引用

强引用是最普通、最常见的引用方式。

        Person person = new Person("Tom", 20);

强引用的对象,一定不会被JVM回收。

对于强引用,当内存占用过多时,就会出现 OutOfMemoryError

        Person[] arr1 = new Person[80000];

        for (int i = 0; i < arr1.length; i++) {
            arr1[i] = new Person("Tom" + i, i % 20);
            System.out.println(arr1[i]);
        }

正常情况下运行结果OK。为了模拟内存被占满的情况,我们把JVM的内存设置为较低值:

-Xmx8m -Xms8m

如果是在命令行下运行:

java -Xmx8m -Xms8m xxxxxx

如果是IntelliJ IDEA,右键,More Run/Debug -> Modify Run Configuration…:

在这里插入图片描述

在弹出的对话框里,点击“Modify options”,在子菜单中确保勾选了“Add VM options”,然后填入 -Xmx8m -Xms8m

在这里插入图片描述

运行结果如下:

......
Person{name='Tom61694', age=14}
Person{name='Tom61695', age=15}
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
	at java.base/jdk.internal.misc.Unsafe.allocateUninitializedArray(Unsafe.java:1375)
	at java.base/java.lang.StringConcatHelper.newArray(StringConcatHelper.java:494)
......

可见,在创建到大约60000个对象的时候,内存就会溢出。

软引用(SoftReference)

软引用的作用是,当内存空间充足时,它不会被系统回收,但是当内存空间不足时,它就会被系统回收。

软引用的用法如下:

        SoftReference<Person> person = new SoftReference<>(new Person("Tom", 20));
        ......
        person.get();

把上面强引用的代码稍作修改,如下:

        SoftReference<Person>[] arr1 = new SoftReference[80000];

        for (int i = 0; i < arr1.length; i++) {
            arr1[i] = new SoftReference<>(new Person("Tom" + i, i % 20));
            System.out.println(arr1[i].get());
        }

        System.out.println(arr1[1].get());

        System.out.println(arr1[3].get());

        System.out.println(arr1[79999].get());

运行结果如下(别忘了设置JVM内存):

......
Person{name='Tom79998', age=18}
Person{name='Tom79999', age=19}
null
null
Person{name='Tom79999', age=19}

可见,80000个对象依次创建成功,内存没有溢出,但是创建完毕后,再访问这些对象时,发现前面一部分对象已经变成null了。这是由于在创建后面的对象时,内存不够,触发了垃圾回收,前面的软引用对象被清除了。

多次运行代码,最后一行,有时也会打印出 null ,这说明每次垃圾回收的时机和回收的对象数量是不一定的。

弱引用(WeakReference)

弱引用和软引用类似,区别在于,不管内存是否充足,只要有垃圾回收,弱引用对象就会被回收。

弱引用的用法如下:

        WeakReference<Person> person = new WeakReference<>(new Person("Tom", 20));

        System.out.println(person.get());

        System.gc();
        System.runFinalization();

        System.out.println(person.get());

运行结果如下(无需设置JVM内存):

Person{name='Tom', age=20}
null

可见,垃圾回收时,弱引用对象被回收了。

WeakReference 功能类似的还有 WeakHashMap

对于map里的key值,如果其对象是弱引用,则在垃圾回收时,会把该对象回收,并把该key值从map里移除。

        WeakHashMap<Person, String> map = new WeakHashMap<>();
        map.put(new Person("Tom", 20), "aaa");
        map.put(new Person("Jerry", 30), "bbb");

        System.out.println(map);

        System.gc();
        System.runFinalization();

        System.out.println(map);

运行结果如下:

{Person{name='Jerry', age=30}=bbb, Person{name='Tom', age=20}=aaa}
{}

考一考

下面的代码,运行结果是什么?

        WeakHashMap<Person, String> map = new WeakHashMap<>();
        Person person1 = new Person("Tom", 20);
        map.put(person1, "aaa");
        // person1 = null;
        Person person2 = new Person("Jerry", 30);
        map.put(person2, "bbb");
        // person2 = null;

        System.out.println(map);

        System.gc();
        System.runFinalization();

        System.out.println(map);

乍一看,似乎跟前一个例子没什么太大区别,但运行结果是不同的:

{Person{name='Jerry', age=30}=bbb, Person{name='Tom', age=20}=aaa}
{Person{name='Jerry', age=30}=bbb, Person{name='Tom', age=20}=aaa}

这两个key对象为什么没有被回收掉呢?其实原因很简单,因为person1和person2还在引用它们。这是强引用,所以不会被垃圾回收。要想被垃圾回收,只需解除强引用(参见被注释掉的那两行代码)。

虚引用(PhantomReference)

虚引用的主要作用是跟踪对象被垃圾回收的状态。

虚引用不能单独使用,必须和引用队列(ReferenceQueue)一起使用。引用队列保存了被回收后对象的引用。它和软引用、弱引用等联合使用,这些对象被回收时,会把引用添加到相关联的引用队列中。

        ReferenceQueue<Person> queue = new ReferenceQueue<>();

        PhantomReference<Person> phantomReference = new PhantomReference<>(new Person("Tom", 20), queue);

        // 虚引用的 get() 方法总是返回null
        System.out.println(phantomReference.get());

        // 还没做垃圾回收,所以队列为空
        System.out.println(queue.poll());

        System.gc();
        System.runFinalization();

        // 垃圾回收后,虚引用对象在队列中
        System.out.println(queue.poll());

运行结果如下:

null
null
java.lang.ref.PhantomReference@36baf30c

既然虚引用都get不到实际对象,那它到底有什么用呢?

看起来,虚引用的用处,就是会触发一个事件。我们可以另起一个线程,对队列进行监听,比如:

  • remove() :阻塞方法
  • poll() :非阻塞方法

这样,当对象被回收时,我们就会得到通知,做相应的处理(比如清理资源)。

总结

强引用软引用弱引用
垃圾回收时,不会被回收YNN
垃圾回收时,若内存不足,就会被回收NYY
只要有垃圾回收,就会被回收NNY

垃圾回收

垃圾回收机制主要做两件事:

  • 跟踪每个Java对象的可达状态,回收不可达对象的内存
  • 清理分配和回收过程中产生的内存碎片

垃圾回收的设计思想:

  • 串行和并行:使用单CPU还是多CPU来做回收
  • 并发和停止(stop-the-world):回收时,应用是否暂停
  • 紧凑和不紧凑:如果只是回收对象,则内存可能会产生很多碎片。把所有活着的对象复制到一起,可以避免内存碎片

回收方式:

  • 复制:把内存分成两个相同的空间A和B,以A空间为例,从根开始,把每个可达对象复制到B空间,最后把整个A空间重置
  • 标记清除(mark-sweep):从根开始,标记每个可达对象,最后回收所有没有标记可达的对象
  • 标记清除紧凑(mark-sweep-compact):从根开始,标记每个可达对象,最后把所有活着的对象搬迁在一起,并回收其它内存空间

分代内存:

  • 新生代(Young):大部分对象存活时间不会很长,处于新生代
  • 老年代(Old):少量对象存活时间很长,处于老年代
  • 永生代(Permanent):主要用于存放Class对象,方法等信息

新生代

新生代又分为Eden(伊甸园)区和Survivor区。

绝大部分对象先分配到Eden区,而Survivor区的对象至少熬过一次垃圾回收。

Survivor区又分为From区和To区,参见上面提到的“复制”回收方式。

垃圾回收时,将Eden区和From区的可达对象复制到To区,然后清空Eden区和From区,最后把From和To互换一下。

老年代

如果一个对象熬过了数次垃圾回收,就可能会被转入老年代。

老年代的垃圾回收频率无需太高,因为老年代的对象都很能熬。

  • 次要回收:新生代的垃圾回收,频率较高
  • 主要回收:新生代和老年代的垃圾回收,频率较低

老年代的垃圾回收通常采用标记清除紧凑算法。

永生代

主要用于存放Class对象,方法等信息,默认为64MB。

内存管理小技巧

尽量使用直接量

        String str1 = "hello"; // 在字符串缓存池里缓存了hello字符串
        String str2 = new String("hello"); //同上,此外还多创建了一个char[]数组

使用StringBuilder和StringBuffer进行字符串拼接

String字符串是不可变的,如果直接对字符串拼接,将产生大量的临时字符串。

        String str1 = "hello";
        String str2 = "world";
        String str3 = "!!!";

        String result1 = str1 + str2 + str3; // 产生大量的临时字符串
        System.out.println(result1);

        StringBuilder result2 = new StringBuilder();
        result2.append(str1);
        result2.append(str2);
        result2.append(str3);
        System.out.println(result2.toString());

        StringBuffer result3 = new StringBuffer();
        result3.append(str1);
        result3.append(str2);
        result3.append(str3);
        System.out.println(result3.toString());

尽早释放无用对象的引用

        Person person = new Person("Tom", 20);
        person.doSomething();
        // person = null;
        ......

本例中,创建并使用完person对象后,最好将其释放(参见注释处代码),否则,person变量在其作用域范围内,会一直持有对象引用,导致对象无法被系统回收。

尽量少用静态变量

class A {
    static B b = new B();
}

本例中,b是A类的静态变量,其生命周期与A类一致(存入永生代)。

避免在循环中创建对象

        for (int i = 0; i < 100; i++) {
            Person person = new Person("Tom", 20);
            ......
        }

创建了100个Person对象,它们的生存时间都很短。系统需要不断的分配和回收内存。

缓存经常使用的对象

典型的例子是数据库连接池。

避免使用finalize()方法

垃圾回收的工作量已经很大了,尤其是新生代,对象很多,回收频繁,若再使用finalize()方法清理资源,更加重了垃圾回收的负担。

使用SoftReference

参见前面的介绍。

注意SoftReference和WeakReference的不确定性,在使用对象时,应检查其是否为空。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2150557.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue学习记录之六(组件实战及BEM框架了解)

一、BEM BEM是一种前端开发中常用的命名约定&#xff0c;主要用于CSS和HTML的结构化和模块化。BEM是Block、Element、Modifier的缩写。 Block&#xff08;块&#xff09;&#xff1a;独立的功能性页面组件&#xff0c;可以是一个简单的按钮&#xff0c;一个复杂的导航条&…

A Simple Encoder-Decoder for Open-Vocabulary Semantic Segmentation

FAM: Feature Aggregation Module&#xff0c;Circle with R represents removing feature maps of non-selected categories 辅助信息 权重有1.3G&#xff0c;不建议复现

neo4j关系的创建删除 图的删除

关系的创建和删除 关系创建 CREATE (:Person {name:"jack"})-[:LOVE]->(:Person {name:"Rose"})已有这个关系时&#xff0c;merge不起效果 MERGE (:Person {name:"Jack" })-[:LOVE]->(:Person {name:"Rose"})关系兼顾节点和关…

功耗中30分钟下载场景对平均电流标准的影响评估

下载场景的测试数据: 测试结论:相同场景下,有应用下载安装跟没应用下载安装,平均电流相差90-140mA左右 查看数据:下载场景的平均增量电流 (227+279) / 2 - 136 = 117 mA 理论的量化数据影响 根据当前的测试数据:静置待机平均电流 136 mA,下载场景平均电流增量 117mA, …

相亲交易系统源码详解与开发指南

随着互联网技术的发展&#xff0c;越来越多的传统行业开始寻求线上转型&#xff0c;其中就包括婚恋服务。传统的相亲方式已经不能满足现代人快节奏的生活需求&#xff0c;因此&#xff0c;开发一款基于Web的相亲交易系统显得尤为重要开发者h17711347205。本文将详细介绍如何使用…

电气自动化入门05:三相异步电动机的正反转点动控制电路

视频链接&#xff1a;3.2 电工知识&#xff1a;三相异步电动机的正反转点动控制电路_1_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1PJ41117PW?p6&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5 1.断路器及其选型 1.1断路器定义、分类、表示符号 1.2.断路器功能、…

Vision Transform—用于大规模图像分类的Transformers架构

VIT — 用于大规模图像识别的 Transformer 论文题目&#xff1a;AN IMAGE IS WORTH 16X16 WORDS:TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE。 官方代码&#xff1a;https://github.com/google-research/vision_transformer 引言与概述 Vision Transformer&#xff08;ViT&…

虚拟机vaware中cpu设置跑满大核

首先&#xff0c;大核速度快&#xff0c;并且在资源紧张时大核优先&#xff0c;小核甚至是闲着围观大核跑满。其次&#xff0c;遇到经常切换操作虚拟机和win11的使用场景&#xff0c;切换核心本身也会造成一点卡顿&#xff0c;降低虚拟机里操作流畅度。另外&#xff0c;13代在你…

【linux】4张卡,坏了1张,怎么办?

先禁用这张卡 grub 禁用&#xff0c;防止加载驱动 禁用这张卡的 PCI # 禁用 PCI 设备 0000:b1:00.0 (NVIDIA GPU) ACTION"add", SUBSYSTEM"pci", ATTR{vendor}"0x10de", KERNELS"0000:b1:00.0", RUN"/bin/sh -c echo 0000:b1:00…

vue part 10

vue-resource 在vue1.0时代讲的比较多&#xff0c;是vue.插件库&#xff0c; import vueResource from vue-resourceVue.use(vueResource) 在vc和vm中会多出如下F12代码即&#xff0c;$http:() 他的用法和返回值和axios一模一样&#xff0c;但是不常维护了 插槽 默认插槽 …

11年计算机考研408-数据结构

设执行了k次。 解析&#xff1a; d要第一个出&#xff0c;那么abc先入栈&#xff0c;d入栈然后再出栈&#xff0c;这前面是一个固定的流程&#xff0c;后面就很灵活了&#xff0c;可以ecba&#xff0c;ceba&#xff0c;cbea&#xff0c;cbae。 答案是4个序列。 解析&#xff1a…

解决redis缓存击穿问题之布隆过滤器

布隆过滤器 1. 什么是布隆过滤器 布隆过滤器&#xff08;Bloom Filter&#xff09;是一个空间效率很高的数据结构&#xff0c;用于判断一个元素是否在一个集合中。布隆过滤器的核心思想是利用位数组和一系列随机映射函数&#xff08;哈希函数&#xff09;来快速判断某个元素是…

基于SpringBoot+Vue+MySQL的网上租赁系统

系统展示 用户前台界面 管理员后台界面 系统背景 在当前共享经济蓬勃发展的背景下&#xff0c;网上租赁系统作为连接租赁双方的重要平台&#xff0c;正逐步改变着人们的消费观念和生活方式。通过构建一个基于SpringBoot、Vue.js与MySQL的网上租赁系统&#xff0c;我们旨在为用户…

LangChain 和 Elasticsearch 加速构建 AI 检索代理

作者&#xff1a;来自 Elastic Joe McElroy, Aditya Tripathi, Serena Chou Elastic 和 LangChain 很高兴地宣布发布新的 LangGraph 检索代理模板&#xff0c;旨在简化需要代理使用 Elasticsearch 进行代理检索的生成式人工智能 (GenAI) 代理应用程序的开发。此模板预先配置为使…

基于机器学习的癌症数据分析与预测系统实现,有三种算法,bootstrap前端+flask

研究背景 癌症作为全球范围内最主要的死亡原因之一&#xff0c;已成为当代医学研究和公共健康的重大挑战。据世界卫生组织&#xff08;WHO&#xff09;的统计&#xff0c;癌症每年导致全球数百万人的死亡。随着人口老龄化、环境污染和生活方式的改变&#xff0c;癌症的发病率逐…

Pytorch学习---基于经典网络架构ResNet训练花卉图像分类模型

基于经典网络架构训练图像分类模型 导包 import copy import json import time import torch from torch import nn import torch.optim as optim import torchvision import os from torchvision import transforms, models, datasets import numpy as np import matplotlib.…

【使用Hey对vllm接口压测】模型并发能力

使用Hey对vllm进行模型并发压测 docker run --rm --networkknowledge_network \registry.cn-shanghai.aliyuncs.com/zhph-server/hey:latest \-n 200 -c 200 -m POST -H "Content-Type: application/json" \-H "Authorization: xxx" \-d {"model"…

【类型黑市】指针

大家好我是#Y清墨&#xff0c;今天我要介绍的是指针。 意义 指针就是存放内存地址的变量。 分类 因为变量本身是分类型的&#xff0c;我们学过的变量类型有 int, long long, char, double, string, 甚至还有结构体变量。 同样&#xff0c;指针也分类型&#xff0c;如果指针指向…

云韧性,现代云服务不可或缺的组成部分

韧性&#xff0c;一个物理学概念&#xff0c;表示材料在变形或者破裂过程中吸收能量的能力。韧性越好&#xff0c;则发生脆性断裂的可能性越小。 如今&#xff0c;韧性也延伸到企业特质、产品特征等之中&#xff0c;用于形容企业、产品乃至服务的优劣。同样&#xff0c;随着云…

3. Internet 协议的安全性

3. Internet 协议的安全性 (1) 常用网络协议的功能、使用的端口及安全性 HTTP协议 功能:用于从服务器传输超文本到本地浏览器。端口:默认是80端口。安全性:不提供数据加密,存在数据泄露和中间人攻击风险。使用HTTPS协议(443端口)可以增强安全性。FTP协议 功能:实现文件的…