【医学半监督】置信度指导遮蔽学习的半监督医学图像分割

news2024/11/15 12:59:59

摘要: 

        半监督学习(Semi-supervised learning)旨在利用少数标记数据和多数未标记数据训练出高性能模型。现有方法大多采用预测任务机制,在一致性或伪标签的约束下获得精确的分割图,但该机制通常无法克服确认偏差。针对这一问题,本文提出了一种用于半监督医学图像分割的新型置信度引导遮蔽学习(Confidence-Guided Mask Learning,CGML)。具体来说,在预测任务的基础上,我们进一步引入了带有遮蔽学习的辅助生成任务,旨在重建遮蔽图像以极大地促进特征表征学习模型的能力。此外,我们还开发了一种置信度引导的遮蔽策略以增强不确定区域的模型辨别能力。此外,我们还引入了三重一致性损失,以加强对被掩蔽的非标记图像、原始非标记图像和重建的非标记图像的一致性预测,从而产生更可靠的结果。在两个数据集上的广泛实验证明,我们提出的方法取得了显著的性能。

1. Introduction

1.1. Background

        基于一致性正则化的半监督分割可视为预测任务的具体扩展,以推断分割图。在半监督学习中,一致性正则化指的是强制模型对无标注数据的预测保持一致。现有的基于一致性的方法大致可分为三类,即图 1(a) 中的数据级一致性图 1(b) 中的模型级一致性和图 1(c) 中的任务级一致性。有关数据级一致性的研究通常侧重于不同扰动下的预测一致性。此外,模型层面的研究大多是构建双流结构,确保不同模型之间预测的一致性。与模型级一致性不同,任务级一致性通常整合多个任务,确保不同任务的预测一致性。然而,上述方法完全依赖于预测的分割图,这意味着在训练阶段任何次优预测不仅会导致对未标记样本的错误指导,还会扩大确认偏差的负面影响。他们使用的一致性约束限制了模型学习更稳健的表征。为了缓解上述问题,我们提出了一种新的框架,将辅助生成任务纳入半监督学习,如图 1(d)所示。

        本文介绍了一种用于医学图像分割的新型半监督学习方法,即置信度引导的遮蔽学习(CGML)。有别于上述主流方法,我们精心设计了一个辅助生成任务,以捕捉更精

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2149962.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(十六)Ubuntu 20.04 下搭建PX4+MATLAB 仿真环境(HITL)

在文章(十五)Ubuntu 20.04 下搭建PX4MATLAB 仿真环境我们学习了如何配置仿真环境,在本节,主要进行HITL的仿真环境搭建。 根据(十五)Ubuntu 20.04 下搭建PX4MATLAB 仿真环境完成配置到如下界面:…

志邦家居CIO吴俊涛谈转型:天润融通如何赋能家居行业未来

根据国家统计局、住建部等各部门综合数据显示,2024年国内泛家居全渠道销售额在预计将超过4.7万亿元,并且在存量房需求释放与智能家居品类创新的推动下,预计2027年将突破5.3万亿元,展现出强劲的增长弹性。 然而,家居行…

【matlab】将程序打包为exe文件(matlab r2023a为例)

文章目录 一、安装运行时环境1.1 安装1.2 简介 二、打包三、打包文件为什么很大 一、安装运行时环境 使用 Application Compiler 来将程序打包为exe,相当于你使用C编译器把C语言编译成可执行程序。 在matlab菜单栏–App下面可以看到Application Compiler。 或者在…

mybatisplus逻辑删除

逻辑删除配置 mybatis-plus:global-config:db-config:logic-delete-field: deletedlogic-not-delete-value:0logic-delete-value:1 查询语句也会自动加上where isdeleted0

FedOV

3 FEDOV: ONE-SHOT FEDERATED OPEN-SET VOTING FRAMEWORK 3.1 PROBLEM STATEMENT 假设有个客户端及其本地数据集。我们的目标是在服务器的帮助下,在不交换原始数据的情况下,训练一个优秀的机器学习模型 。此外,每个客户端只允许与服务器进行…

Linux 删除文件不释放空间问题处理

背景: 服务器磁盘空间已经达到100%,删除存放日志路径下的文件后,发现空间并未释放! 原因:在linux系统中,通过rm删除文件将会从文件系统的文件夹结构上解除链接(unlink)然后删除,然而假设文件是被…

基于存内计算架构的模型部署与映射优化

先进计算大赛背景: ‘’存内计算”架构通过消除存储与计算单元间的物理距离,突破传统冯诺依曼架构的限制,自2016年起受到广泛关注,被视为国产算力发展的关键技术。 ​ 在存内计算架构中,权重布局对提高存算单元利用率…

VBA技术资料MF198:禁用下拉拖放

我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。“VBA语言専攻”提供的教程一共九套,分为初级、中级、高级三大部分,教程是对VBA的系统讲解&#…

c++ day01

格式化输入 #include <iostream> #include<iomanip> using namespace std;int main() {double num1090.123456;cout<<"num"<<num<<endl;cout<<oct<<"num"<<num<<endl;cout<<hex<<&qu…

【C#】内存的使用和释放

在 C# 中&#xff0c;内存管理主要是由 .NET 的垃圾回收器&#xff08;Garbage Collector, GC&#xff09;自动处理的。然而&#xff0c;了解如何正确地使用和释放内存对于编写高效且可靠的代码非常重要。以下是一些关键点和最佳实践&#xff1a; 1. 内存分配 托管资源&#x…

如何查询论文的SCI检索号?

一、登录Web of Science 不要自己登录&#xff0c;需要选择机构为CHINA CERNET Federation&#xff0c;否则无法查询文章。 然后转到机构&#xff0c;选择对应的大学。 更具对应文章名查询文献。 二、查询文献名

python基础知识(六)--字典遍历、公共运算符、公共方法、函数、变量分类、参数分类、拆包、引用

字典遍历方法 函数名含义keys()以列表的形式&#xff0c;返回一个字典所有的键。values()以列表的形式&#xff0c;返回一个字典所有的值。items()返回由键值组成的序列&#xff0c;主要应用于遍历字典。 公共运算符 运算符描述支持的容器类型合并字符串、列表、元组*复制字符…

linux入门到实操-9 linux文件操作命令:创建文件、复制文件或文件夹、删除和移动文件、多种查看文件的方法

教程来源&#xff1a;B站视频BV1WY4y1H7d3 3天搞定Linux&#xff0c;1天搞定Shell&#xff0c;清华学神带你通关_哔哩哔哩_bilibili 整理汇总的课程内容笔记和课程资料&#xff08;包含课程同版本linux系统文件等内容&#xff09;&#xff0c;供大家学习交流下载&#xff1a;…

PHP限定post提交数据的次数

PHP限定post提交数据的次数。 在PHP中&#xff0c;你可以通过记录IP地址的提交次数并在会话或数据库中存储这些信息来实现这个需求。以下是一个简单的PHP示例&#xff0c;它使用会话来跟踪IP地址的提交次数。 <?php session_start(); // 获取用户的IP地址 $ip_address $…

迁移学习+多模态融合,小白轻松发一区!创新性拉满!

多模态研究如今愈发火热&#xff0c;已成为各大顶级会议的投稿热门。今天&#xff0c;我为大家提供一个多模态的创新思路&#xff1a;迁移学习与多模态融合。 迁移学习多模态融合方向的优势 1.提升模型性能&#xff1a;综合更多维度优势&#xff0c;跨模态互补 2.快速适应新…

计算机网络 --- 初识协议

序言 上一篇文章中 &#xff08;&#x1f449;点击查看&#xff09;&#xff0c;我们简单的了解了怎么寻找目标计算机&#xff0c;需要通过交换机&#xff0c;路由器等设备跨越多个网络来不断的转发我们需要传输的数据&#xff0c;直至到达目标计算机。  那我们设备之间数据是…

挖矿病毒排查演示

1、上传病毒文件到/opt目录中 2、把压缩文件名修改成virus.zip 3、检查一下/etc/passwd ​ root:x:0:0:root:/root:/bin/bash bin:x:1:1:bin:/bin:/sbin/nologin daemon:x:2:2:daemon:/sbin:/sbin/nologin adm:x:3:4:adm:/var/adm:/sbin/nologin lp:x:4:7:lp:/var/spool/lpd:…

GeoGebra 與數學探索 3 GeoGebra 在微積分的探索與動態演示

Goal: GeoGebra 除了可以輕鬆的讓我們以即時動態反饋圖形的方式模擬探索幾何的問題, 或是幫我們驗證答案, 也可以進行數論、微積分、矩陣等等各方面的探索, 在問題尺度不大又需要即時以圖像視覺呈現探索過程的情況下, GeoGebra 其實優於以寫程式的方式進行探索. “Talk is che…

unordered_map/set(底层实现)——C++

目录 前言&#xff1a; 1.开散列 1. 开散列概念 2. 开散列实现 2.1哈希链表结构体的定义 2.2哈希表类即私有成员变量 2.3哈希表的初始化 2.4迭代器的实现 1.迭代器的结构 2.构造 3.* 4.-> 5. 6.&#xff01; 2.5begin和end 2.6插入 2.7Find查找 2.8erase删除 3.unordered_ma…

mybatisplus中id生成策略

使用Tableld(value,type) 1.typeIdType.AUTO自增主键 2.typeIdType.ASSIGN,雪花算法生成 mybatisplus id生成策略全局配置 配置表前缀以及id生成策略 mybatis-plus:global-config:db-config:id-type: autotable-prefix: :t_