电力电塔电线缺陷检测数据集 voc yolo

news2025/1/24 2:26:12

 电力 电塔电线缺陷检测数据集 10000张 带标注 voc yolo

电力电塔电线缺陷检测数据集

数据集描述

该数据集旨在用于电力电塔和电线的缺陷检测任务,涵盖多种常见的缺陷类型。数据集包含了大量的图像及其对应的标注信息,可用于训练计算机视觉模型,以识别和定位电力设施中的各种缺陷。

数据规模

数据集共有9838张图像,标注了44520个缺陷对象。

类别及数量

数据集中的类别及数量如下:

  1. 绑扎不规范:3717张图像,标注了14510个对象。
  2. 并线线夹保护壳缺失:3317张图像,标注了11285个对象。
  3. 耐张线夹保护壳缺失:3748张图像,标注了16148个对象。
  4. 横杆腐蚀:987张图像,标注了1556个对象。
  5. 塔头损坏:972张图像,标注了1021个对象。
标注格式

数据集中的标注信息采用了VOC(Visual Object Classes)格式,每个图像都有一个对应的XML文件,记录了每个对象的位置信息(边界框坐标)和类别标签。此外,也可以选择YOLO格式的标注文件(TXT文件),方便使用YOLO系列模型进行训练。

数据集结构

典型的数据集目录结构如下:

1power_tower_defect_detection_dataset/
2├── Annotations/
3│   ├── img_0001.xml
4│   ├── img_0002.xml
5│   └── ...
6├── ImageSets/
7│   ├── Main/
8│   │   ├── train.txt
9│   │   ├── val.txt
10│   │   └── test.txt
11├── JPEGImages/
12│   ├── img_0001.jpg
13│   ├── img_0002.jpg
14│   └── ...
15└── labels/
16    ├── train/
17    │   ├── img_0001.txt
18    │   ├── img_0002.txt
19    └── val/
20        ├── img_0001.txt
21        ├── img_0002.txt
应用场景

该数据集可以用于以下应用场景:

  • 缺陷检测与分类:训练模型识别电力电塔和电线中的不同缺陷类型。
  • 故障诊断:实时监测电力设施中的异常情况,提高故障诊断效率。
  • 预防性维护:辅助电力公司的预防性维护计划,减少因缺陷导致的停电事故。
  • 科研分析:用于研究电力设施缺陷的发生规律和发展趋势。

示例代码

以下是一个使用Python和相关库(如OpenCV、PyTorch等)来加载和展示数据集的简单示例代码:

 
1import os
2import cv2
3import xml.etree.ElementTree as ET
4from PIL import Image
5import numpy as np
6
7# 数据集路径
8dataset_path = 'path/to/power_tower_defect_detection_dataset/'
9
10# 加载图像和标签
11def load_image_and_label(image_path, annotation_path):
12    # 读取图像
13    image = Image.open(image_path).convert('RGB')
14    # 解析XML文件
15    tree = ET.parse(annotation_path)
16    root = tree.getroot()
17    objects = []
18    for obj in root.findall('object'):
19        name = obj.find('name').text
20        bbox = obj.find('bndbox')
21        xmin = int(bbox.find('xmin').text)
22        ymin = int(bbox.find('ymin').text)
23        xmax = int(bbox.find('xmax').text)
24        ymax = int(bbox.find('ymax').text)
25        objects.append([xmin, ymin, xmax, ymax, name])
26    return image, objects
27
28# 展示图像
29def show_image_with_boxes(image, boxes):
30    img = np.array(image)
31    for box in boxes:
32        xmin, ymin, xmax, ymax, name = box
33        cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
34        cv2.putText(img, name, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
35    cv2.imshow('Image with Boxes', img)
36    cv2.waitKey(0)
37    cv2.destroyAllWindows()
38
39# 主函数
40if __name__ == "__main__":
41    images_dir = os.path.join(dataset_path, 'JPEGImages')
42    annotations_dir = os.path.join(dataset_path, 'Annotations')
43    
44    # 获取图像列表
45    image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
46    
47    # 随机选择一张图像
48    selected_image = np.random.choice(image_files)
49    image_path = os.path.join(images_dir, selected_image)
50    annotation_path = os.path.join(annotations_dir, selected_image.replace('.jpg', '.xml'))
51    
52    # 加载图像和标签
53    image, boxes = load_image_and_label(image_path, annotation_path)
54    
55    # 展示带有标注框的图像
56    show_image_with_boxes(image, boxes)

这段代码展示了如何加载图像和其对应的VOC XML标注文件,并在图像上绘制边界框和类别标签。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。如果您需要将VOC格式的标注转换为YOLO格式,可以参考以下转换示例:

示例代码:从VOC格式转换为YOLO格式

 

python

深色版本

1import os
2import xml.etree.ElementTree as ET
3import shutil
4
5# 数据集路径
6dataset_path = 'path/to/power_tower_defect_detection_dataset/'
7
8# VOC标注文件目录
9voc_annotations_dir = os.path.join(dataset_path, 'Annotations')
10# 输出YOLO标签文件目录
11yolo_labels_dir = os.path.join(dataset_path, 'labels')
12
13# 创建YOLO标签目录
14os.makedirs(yolo_labels_dir, exist_ok=True)
15
16# 复制VOC图像集划分文件到YOLO目录
17for split in ['train', 'val']:
18    shutil.copy(os.path.join(dataset_path, 'ImageSets/Main/{}.txt'.format(split)), os.path.join(yolo_labels_dir, '{}.txt'.format(split)))
19
20# 从VOC格式转换为YOLO格式
21def convert_voc_to_yolo(voc_path, yolo_path, width, height):
22    with open(voc_path, 'r') as infile:
23        tree = ET.parse(infile)
24        root = tree.getroot()
25        objects = []
26        for obj in root.findall('object'):
27            name = obj.find('name').text
28            bbox = obj.find('bndbox')
29            xmin = int(bbox.find('xmin').text)
30            ymin = int(bbox.find('ymin').text)
31            xmax = int(bbox.find('xmax').text)
32            ymax = int(bbox.find('ymax').text)
33            x_center = (xmin + xmax) / 2.0
34            y_center = (ymin + ymax) / 2.0
35            w = xmax - xmin
36            h = ymax - ymin
37            x_center /= width
38            y_center /= height
39            w /= width
40            h /= height
41            objects.append([name, x_center, y_center, w, h])
42
43    with open(yolo_path, 'w') as outfile:
44        for obj in objects:
45            line = f"{obj[0]} {obj[1]} {obj[2]} {obj[3]} {obj[4]}\n"
46            outfile.write(line)
47
48# 主函数
49if __name__ == "__main__":
50    # 获取VOC标注文件列表
51    voc_files = [f for f in os.listdir(voc_annotations_dir) if f.endswith('.xml')]
52    
53    # 遍历VOC文件并转换为YOLO格式
54    for voc_file in voc_files:
55        # 获取图像尺寸
56        image_file = os.path.join(dataset_path, 'JPEGImages', voc_file.replace('.xml', '.jpg'))
57        image = Image.open(image_file)
58        width, height = image.size
59        
60        # 转换并保存YOLO标签文件
61        yolo_file = os.path.join(yolo_labels_dir, voc_file.replace('.xml', '.txt'))
62        convert_voc_to_yolo(os.path.join(voc_annotations_dir, voc_file), yolo_file, width, height)

这段代码展示了如何将VOC格式的标注文件转换为YOLO格式的标签文件,方便使用YOLO系列模型进行训练。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2148275.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DEPLOT: One-shot visual language reasoning by plot-to-table translation论文阅读

文章链接:https://arxiv.org/abs/2308.01979http://arxiv.org/abs/2212.10505https://arxiv.org/abs/2308.01979 源码链接:https://github.com/cse-ai-lab/RealCQA Abstract 理解图表需要很强的推理能力,之前的最先进 (SOTA&…

圆周阵列元件的间距增加操作方法

在进行器件圆周阵列时,内圈的角度和外圈的旋转角度都相同,由于内圈的圆周长小于外圈的圆周长,有可能在内圈造成部分元件之间有两个焊盘会有覆盖的情况,此时需要对内圈的元件位置进行微调,需要增加在同一半径位置的元件…

数据结构 ——— 算法的时间复杂度

目录 时间复杂度的概念 时间复杂度函数式 大O的渐进表示法的概念 大O的渐进表示法 时间复杂度的概念 在计算机科学中,算法的时间复杂度是一个函数(数学上的函数式),它定量描述了该算法的运行时间,一个算法执行所耗…

Netty笔记10-Netty参数调优

文章目录 一、CONNECT_TIMEOUT_MILLISCONNECT_TIMEOUT_MILLIS设置为1秒超时CONNECT_TIMEOUT_MILLIS设置为5秒超时注意事项 二、SO_BACKLOG代码示例注意事项 三、ulimit -n(文件描述符)设置文件描述符限制在注意事项 四、TCP_NODELAY使用 TCP_NODELAY 的场景注意事项 五、SO_SND…

软件安全最佳实践:首先关注的地方

尽管组织拥有大量可用的工具,但应用程序安全性仍然不足。 最近的数据显示,在过去四到五年中,软件供应链攻击同比增长了 600-700%,超过一半的美国企业在过去 12 个月中遭受过某种形式的软件供应链攻击。 为何应用程序安全工作未…

签署《AI安全国际对话威尼斯共识》 智源持续推动人工智能安全发展

近日,由AI安全国际论坛(Safe AI Forum)和博古睿研究院(Berggruen Institute) 共同举办的第三届国际AI安全对话(International Dialogues on AI Safety)在威尼斯举办。图灵奖得主Yoshua Bengio、姚期智教授&…

电气设备施工现场风险状态判断ai模型训练数据集

电气设备施工现场风险状态判断ai模型训练数据集 id:18 电气设备施工现场工人人工智能学习数据和工作环境安全数据,建立系统化管理体系,改变全球EHS范式,预防工业事故。数据集记录了387709例子电力设施建设以及施工现场相关的灾害安全环境数据…

VM16安装macOS11

注意: 本文内容于 2024-09-17 12:08:24 创建,可能不会在此平台上进行更新。如果您希望查看最新版本或更多相关内容,请访问原文地址:VM16安装macOS11。感谢您的关注与支持! 使用 Vmware Workstation Pro 16 安装 macOS…

数字世界的新秩序:探索Web3的前景

在过去的几十年中,互联网已经彻底改变了我们的生活方式,推动了信息共享、全球互联以及数字经济的快速发展。然而,当前的互联网架构主要是中心化的,由少数大型科技公司控制数据、服务和基础设施。这种模式虽然高效,但也…

Golang | Leetcode Golang题解之第419题棋盘上的战舰

题目: 题解: func countBattleships(board [][]byte) (ans int) {for i, row : range board {for j, ch : range row {if ch X && !(i > 0 && board[i-1][j] X || j > 0 && board[i][j-1] X) {ans}}}return }

微服务注册中⼼2

5.Nacos配置管理 Nacos除了可以做注册中⼼,同样可以做配置管理来使⽤ 5.1 统⼀配置管理 当微服务部署的实例越来越多,达到数⼗、数百时,逐个修改微服务配置就会让⼈抓狂,⽽且很容易出错。我们需要⼀种统⼀配置管理⽅案&#xf…

idea生成类信息及快捷开发配置

目录 一、预言 二、在Java类的开头自动注释作者名字和日期等信息 2.1.各种预设变量 2.2.idea配置 2.3.成品展示 三、快捷开发 3.1.三种循环热键 3.2.if判断 3.3.instanceof运算 3.4.非空判断 3.5.测试打印 3.6. synchronized 3.7.异常抛出 一、预言 在…

Java运算符有哪些?深入解析Java运算符:从基础到进阶的全方位指南(超全表格)

💻1.前言 在编程中,运算符是处理数据和变量的基本工具。它们不仅使得代码更加简洁,还能极大地提高编程效率。本文还提供了详细的 Java运算符参考表格,涵盖了算术运算符、关系运算符、逻辑运算符、赋值运算符、位运算符、…

Dependency Check:一款针对应用程序依赖组件的安全检测工具

关于Dependency Check Dependency-Check 是一款软件组合分析 (SCA) 工具,可尝试检测项目依赖项中包含的公开披露的漏洞。它通过确定给定依赖项是否存在通用平台枚举 (CPE) 标识符来实现此目的。如果找到,它…

Arthas thread(查看当前JVM的线程堆栈信息)

文章目录 二、命令列表2.1 jvm相关命令2.1.2 thread(查看当前JVM的线程堆栈信息)举例1:展示[数字]线程的运行堆栈,命令:thread 线程ID举例2:找出当前阻塞其他线程的线程 二、命令列表 2.1 jvm相关命令 2.…

展锐平台的手机camera 系统开发过程

展锐公司有自己的isp 图像处理引擎,从2012 年底就开始在智能手机上部署应用。最初的时候就几个人做一款isp的从hal 到kernel 驱动的完整软件系统,分工不是很明确,基本是谁擅长哪些就搞哪些,除了架构和编码实现之外,另外…

Flask项目入门和视图

1、第一个项目的结构 以示例代码中的入口文件app.py为例子 (1)引入Flask以及创建Flask对象 from flask import Flask app Flask(__name__)(2) 路由route 视图函数 app.route(/index/) def hello_world():# 响应:…

超详细PS2019安装教程与安装步骤图文解析!保姆级教程!(附赠PS下载地址)

步骤1:下载Adobe Photoshop PS CC 2023下载链接:https://pan.quark.cn/s/f997e116f327 下载完成后,解压文件到当前文件夹(随便用什么解压软件都行,现在解压软件都是免费的,没有的到360官网下载360压缩&am…

开源RK3588 AI Module7,并与Jetson Nano生态兼容的低功耗AI模块

RK3588 AI Module7 搭载瑞芯微 RK3588,提供强大的 64 位八核处理器,最高时钟速度为 2.4 GHz,6 TOPS NPU,并支持高达 32 GB 的内存。它与 Nvidia 的 Jetson Nano 接口兼容,具有升级和改进的 PCIe 连接。由于该模块的多功…

Photoshop 2020安装教程

软件介绍 Adobe Photoshop,简称“PS”,是美国Adobe公司旗下最为出名的图像处理软件系列之一。ps 2021新增一键换天空,AI只能滤镜,新增内置的画笔工具极为丰富,成千上万的精致像素、动态和矢量画笔可以满足你的各种绘图…