卡尔曼滤波中Q和R与噪声的关系

news2025/1/22 19:41:21

在这里插入图片描述

卡尔曼滤波

一种用于估计系统状态的递归滤波器,通过融合传感器测量和系统模型,提供系统状态的最优估计。

Q和R是什么

在卡尔曼滤波中,Q和R分别表示过程噪声和测量噪声的协方差矩阵。

  1. Q Q Q矩阵(过程噪声协方差矩阵)描述了系统模型中未建模的参数不确定性或外部扰动导致的随机变化。 Q Q Q矩阵的大小与状态向量的维度相同,它反映了状态方程中的过程噪声对状态演化的影响。通常, Q Q Q矩阵中的元素越大,表示过程噪声越大,系统状态的估计就越不确定。

  2. R R R矩阵(测量噪声协方差矩阵)描述了测量噪声的不确定性。 R R R矩阵的大小与观测向量的维度相同,它反映了观测方程中的测量噪声对系统状态估计的影响。与 Q Q Q矩阵类似, R R R矩阵中的元素越大,表示测量噪声越大,系统状态的估计就越不确定。

在卡尔曼滤波中, Q Q Q R R R矩阵起到调整卡尔曼滤波性能的作用。如果对系统模型和传感器的噪声有更准确的了解,可以根据实际情况调整 Q Q Q R R R矩阵的值,以获得更精确的状态估计。

Q和R应该取什么?

正如上面所说,Q和R是衡量噪声大小的系数不是设置噪声的系数,所以一味将其调小是不能让滤波误差降低的。
真正适合的Q和R应该是与实际系统相匹配的数字。

附一个KF的python的例程:

在以下是一个简单的卡尔曼滤波器的解析函数(仅用于演示目的):

import numpy as np

def kalman_filter(measurements, initial_state, initial_covariance, A, H, Q, R):
    # 初始化
    state = initial_state
    covariance = initial_covariance

    filtered_states = []
    filtered_covariances = []

    for measurement in measurements:
        # 预测步骤
        predicted_state = np.dot(A, state)  # 状态预测
        predicted_covariance = np.dot(np.dot(A, covariance), A.T) + Q  # 协方差预测

        # 更新步骤
        innovation = measurement - np.dot(H, predicted_state)  # 残差
        innovation_covariance = np.dot(np.dot(H, predicted_covariance), H.T) + R  # 残差协方差

        kalman_gain = np.dot(np.dot(predicted_covariance, H.T), np.linalg.inv(innovation_covariance))  # 卡尔曼增益

        state = predicted_state + np.dot(kalman_gain, innovation)  # 更新状态
        covariance = np.dot(np.eye(len(state)) - np.dot(kalman_gain, H), predicted_covariance)  # 更新协方差

        filtered_states.append(state)
        filtered_covariances.append(covariance)

    return filtered_states, filtered_covariances

解析函数接受以下参数:

  • measurements:测量值的序列
  • initial_state:初始状态向量
  • initial_covariance:初始协方差矩阵
  • A:状态转移矩阵
  • H:观测矩阵
  • Q:过程噪声协方差矩阵
  • R:测量噪声协方差矩阵

该函数将返回滤波后的状态序列和协方差矩阵序列。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2141048.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电子连接器温升仿真教程 一

电子连接器温升是指电子连接器的所有端子在施加额定电载荷的情况下,经过一段时间后,达成热平衡,连接器局部温度不再继续升高,此时规定测试点的温度与测试环境温度的差值。连接器的温升规格值因其应用环境不同,而不同。工业应用,且不与人体接触的电子连接器一般允许温升会…

日系编曲:电吉他音色制作 拾音器选择 电吉他音色制作逻辑 音箱分类 效果器单块分类

拾音器选择 拾音器:获取琴弦震动产生电信号经过线材传输到音箱(amp)使听众听到 一般的电吉他分为三块和两块拾音器,挡位分为三档或五档 Bridge(琴桥拾音器):声音更加清晰,音色更突…

[JAVA]介绍怎样在Java中通过字节字符流实现文件读取与写入

一,初识File类及其常用方法 File类是java.io包下代表与平台无关的文件和目录,程序中操作文件和目录,都可以通过File类来完成。 通过这个File对象,可以进行一系列与文件相关的操作,比如判断文件是否存在,获…

第3步VM的虚拟机无法用网络安装直接改用CDROM镜像包安装软件

精简版的CentOS只有ip add可用 ping命令可用其它软件版本太低都不能用,改用光盘镜像来安装软件。 步骤:1、修改Vm的设置,将光盘映像改为ISO文件。 步骤:2、在centos挂载cdrom 步骤:3、挂载成功后直接安装软件 发现软件…

认知杂谈68《燃爆!兄弟萌不可错过的人生开挂宝典》

内容摘要​: 生活如舞台,我们要做自己人生的导演兼主演。实现自我成长需打牢基础,如读《认知觉醒》等书并制定成长计划。 要向上生长,定短期和长期目标,学新技能、提升沟通能力,可借助在线平台和社群。用番…

面试经典150题——多数元素

目录 题目链接:169. 多数元素 - 力扣(LeetCode) 题目描述 示例 提示: 解法一:哈希表 Java写法: C写法: 解法二:它就在那里 Java写法: C写法: 解法…

求n至少为多大时,n个1组成的整数能被2013整除

题目&#xff1a;编写程序&#xff0c;求n至少为多大时&#xff0c;n个1组成的整数能被2013整除 #include<iostream> using namespace std; int main(){int n1;int m1;while(m%2013!0){m(m%2013)*101;n;}cout<<n<<endl;return 0; } 思路&#xff1a;直接用n…

2024年上海小学生古诗文大会倒计时一个月:做几道2024官方模拟题

2024年上海市小学生古诗文大会自由报名活动的初赛日期于10月19日开始&#xff0c;距离今天只有33天了。 那么如何准备2024年的小学生古诗文大会的自由报名初选呢&#xff1f;吃透&#xff08;记熟&#xff09;2024年小学生古诗文阅读专辑上的题目、知识点和往年真题及知识点。…

Linux memcg lru lock提升锁性能

内核关于per memcg lru lock的重要提交&#xff1a; f9b1038ebccad354256cf84749cbc321b5347497 6168d0da2b479ce25a4647de194045de1bdd1f1d 计算虚拟地址转换基本机制 为了处理多应用程序的地址冲突&#xff0c; linux 系统在应用中使用了虚拟地址&#xff0c;得益于硬件的…

【C++题目】1.日期差值

日期差值 题目&#xff1a; 链接&#x1f517;&#xff1a;日期差值 代码&#xff1a; #include <iostream> using namespace std; /* *思路&#xff1a; * 1. 分别求出每一个日期与0000年0月1日距离的天数 * 2. 两个距离天数相减即可得到两个日期相差的天数 *///平年…

AIGC图片相关知识和实战经验(Flux.1,ComfyUI等等)

最近看了网上的一些新闻&#xff0c;flux.1火出圈了&#xff0c;因此自己也尝试跑了一下&#xff0c;作图的质量还是蛮高的&#xff0c;在这里做个知识总结回顾。 flux.1是什么&#xff1f; 根据介绍&#xff0c;flux.1是由stable diffusion 一作&#xff0c;Stability AI的核…

基于ssm的个性化影片推荐系统设计与实现

需要项目源码请联系我&#xff0c;目前有各类成品 毕设 javaweb ssh ssm springboot等等项目框架&#xff0c;源码丰富。 专业团队&#xff0c;咨询就送开题报告&#xff0c;活动限时免费&#xff0c;有需要的朋友可以来咨询。 一、摘要 随着科学技术的飞速发展&#xff0c;社…

matlab DFT的点数与周期

只需要0——N-1个点就可以算得另一个域全部的信号 周期 时域信号的全部长度时一个周期&#xff0c;所以时域的周期化没有混叠 频域的周期与采样率有关&#xff0c;会混叠。 取一个周期进行傅里叶变换都是对于周期化后的信号取得&#xff0c;由于时域周期化不混叠&#xff0c;所…

全方位解读信息架构:从挑战到解决方案,推动企业数字化转型的全面指南

在数字经济迅猛发展的今天&#xff0c;信息架构 已经成为企业实现数字化转型、提高运营效率和优化 IT 投资的关键手段。无论是初创企业还是成熟企业&#xff0c;构建和实施有效的信息架构不仅能支持业务增长&#xff0c;还能确保数据安全和合规性。《信息架构&#xff1a;商业智…

node.js 中的进程和线程工作原理

本文所有的代码均基于 node.js 14 LTS 版本分析 概念 进程是对正在运行中的程序的一个抽象&#xff0c;是系统进行资源分配和调度的基本单位&#xff0c;操作系统的其他所有内容都是围绕着进程展开的 线程是操作系统能够进行运算调度的最小单位&#xff0c;其是进程中的一个执…

Zookeeper学习

文章目录 学习第 1 章 Zookeeper 入门1.1 概述Zookeeper工作机制 1.2 特点1.3 数据结构1.4 应用场景统一命名服务统一配置管理统一集群管理服务器动态上下线软负载均衡 1.5 下载zookeeper 第 2 章 Zookeeper 本地安装2.1 本地模式安装安装前准备配置修改操作 Zookeeper本地安装…

【三方演化博弈】模型构建与模型求解

一、背景介绍二、收益矩阵计算2.1 博弈主体策略2.2 概率2.3 具体公式2.4 计算过程&#xff08;1&#xff09;企业&#xff08;2&#xff09;政府&#xff08;3&#xff09;环境NGO 三、期望与复制动态方程3.1 企业平均期望3.2 政府平均期望3.3 环境NGO平均期望3.4 三方演化博弈…

旋转链表问题(python3)

旋转链表 问题描述解题思路代码实现 问题描述 给你一个链表的头节点 head &#xff0c;旋转链表&#xff0c;将链表每个节点向右移动 k 个位置。 输入&#xff1a;head [1,2,3,4,5], k 2 输出&#xff1a;[4,5,1,2,3] 链表中节点的数目在范围 [0, 500] 内-100 < Node.va…

robomimic基础教程(一)——基本概念

robosuite和robomimic都是由ARISE Initiative开发的开源工具&#xff0c;旨在推进机器人学习和机器人操作领域的研究。 一、基本概念 robomimic是一个用于机器人示范学习的框架。它提供了在机器人操作领域收集的大量示范数据集&#xff0c;以及用于从这些数据集中学习的离线学…

828华为云征文|华为云Flexus云服务器X实例之openEuler系统下打造EnBizCard个人电子名片

828华为云征文&#xff5c;华为云Flexus云服务器X实例之openEuler系统下打造EnBizCard个人电子名片 一、Flexus云服务器X实例介绍1.1 Flexus云服务器X实例简介1.2 Flexus云服务器X实例特点1.3 Flexus云服务器X实例使用场景 一、EnBizCard介绍2.1 EnBizCard简介2.2 EnBizCard特点…