【隐私计算】Paillier半同态加密算法

news2025/1/1 23:58:21

一、何为同态加密(HE)?

HE是一种特殊的加密方法,它允许直接对加密数据执行计算,如加法和乘法,而计算过程不会泄露原文的任何信息。计算的结果仍然是加密的,拥有密钥的用户对处理过的密文数据进行解密后,得到的正好是处理后原文的结果。

即满足下面的性质的加密算法:

 从明文空间和密文空间的角度来看,密文空间具有特定的算符。明文空间的加法对应密文空间的 ⊕ ,明文空间的乘法对应密文空间的 ⊙ 。如下图:

根据支持的计算类型和支持程度,同态加密可以分为以下三种类型:

  • 半同态加密(Partially Homomorphic Encryption, PHE):只支持加法或乘法中的一种运算。其中,只支持加法运算的又叫加法同态加密(Additive Homomorphic Encryption, AHE);

  • 部分同态加密(Somewhat Homomorphic Encryption, SWHE):可同时支持加法和乘法运算,但支持的计算次数有限;

  • 全同态加密(Fully Homomorphic Encryption, FHE):支持任意次的加法和乘法运算,当前算法复杂度高,实际使用较少。

在同态加密概念被Rivest在1978年首次提出后,学术界出现了多个支持PHE的方案,如RSA、GM、Elgamal、Paillier。此后,SWHE方案也相继问世,如BGN。关于FHE如何实现,学术界在很长的时间都没有答案。直到2009年,Gentry使用理想格构造了第一个FHE方案,轰动了整个学术界,并引发了学者们对于FHE方案构造的研究热潮。此后相继涌现出多个优秀的FHE方案,包括BFV、BGV、CKKS等,以及多个优秀的开源算法库如SEAL、HELib等。

二、隐私计算与同态加密

隐私计算的应用场景非常广泛,除满足多方的通用计算(算数或布尔计算)功能外,还有如隐私集合求交(Private Set Intersection, PSI)、隐私保护机器学习、加密数据库查询、门限签名等等更加细分的应用。然而,在几种主要的通用计算技术路线中,每种方法各有各的效率/安全性缺陷。FHE在计算有限次乘法后需要较复杂的去除噪声的操作,经典的通用MPC协议通信开销较大,而TEE的安全性高度依赖于硬件厂商,无法提供密码学上严谨的安全性。在复杂的计算场景中,单独使用某种通用方法通常得不到一个可用的落地方案,这也激发了学者们研究对于特定场景的特定解法。一个可行的方案通常是根据具体场景来进行定制化的设计,通过组合、优化不同的技术组件来得到安全、高效的方案,精准满足该场景需求。

PHE登场:辅助多种隐私计算场景

由于通用安全计算方法的一些不足,以及在一些特定场景只需要使用一种HE运算(如加法)即可完成功能,PHE在隐私计算领域得到了大量使用,在多个开源库和大量学术顶会的方案中都有它的身影。PHE的高效、支持无限次加法或乘法的特点,使其成为隐私计算的重要基本组件,可辅助完成多种隐私计算功能:

1)隐私保护数据聚合

由于加法PHE可以在密文上直接执行加和操作,不泄露明文,在到多方协作的统计场景中,可完成安全的统计求和的功能。

  • 在联邦学习中,不同参与方训练出的模型参数可由一个第三方进行统一聚合。使用加法PHE,可以在明文数据不出域、且不泄露参数的情况下,完成对模型参数的更新,此方法已应用在实际应用(如FATE和多个顶会工作中(如SIGMOD、KDD、ATC);

  • 在在线广告投放的场景中,广告主(如商家)在广告平台(如媒体)投放在线广告,并希望计算广告点击的转化收益。然而,广告点击数据集和购买数据集分散在广告主和广告平台两方。使用PHE加密结合隐私集合求和(Private Intersection-Sum-with-Cardinality, PIS-C)协议可以在保护双方隐私数据的前提下,计算出广告的转化率。 该方案已被Google落地应用;

  • 在加密数据库SQL查询场景,在数据库不可信的情况下,可以通过部署协议和代理来保护请求者的查询隐私。其中,PHE可以用来完成安全数据求和和均值的查询。

2)乘法三元组生成

通用安全计算根据计算电路的不同可分为算数计算和布尔计算,对于算数计算来说,其中的难点是如何做乘法。而使用预生成的乘法三元组来辅助乘法运算的方法可以大大降低乘法的在线开销,是目前最为流行的方法。PHE是用于计算乘法三元组的重要工具,已在多个顶会方案和实际产品(如Sharemind)中得到应用,对于加速安全计算具有重要意义。

3)构造特定的隐私保护协议

在机器学习预测分类场景中,若拥有模型的一方不可信(如外部厂商),在数据方输入样本进行预测分类时,可能需要保护样本数据的隐私。PHE作为building block可以构造出隐私保护比较协议和argmax协议,并可以此进一步构造出隐私保护朴素贝叶斯分类器和超平面决策分类器。此外,用PHE还可构造出不经意选择(Oblivious Selection)协议,来支持隐私保护决策树分类器。

4)门限签名

传统签名方式要求签名时从存储介质(如磁盘)中拉取完整私钥到内存,存在泄露风险(如被木马、病毒窃取,侧信道攻击等)。 使用门限签名可以有效规避此类风险,让多方协作完成签名过程,并确保私钥没有在任何一方被恢复。特定的PHE算法可以用于实现门限签名,相关方案已在集团密钥管理系统落地。

5)同态秘密分享

同态秘密分享是一种前沿的安全计算技术,可以用来大幅降低安全计算的交互通信量。具有特定代数结构的PHE方案经过特殊设计,可以用来实现同态秘密分享,具有广阔的应用前景。

6)隐私集合求交

使用PHE结合多项式的方法可构造出PSI协议。

三、最著名的半同态加密方案:Paillier

Paillier是一个支持加法同态的公钥密码系统,由Paillier在1999年的欧密会(EUROCRYPT)上首次提出。此后,在PKC'01中提出了Paillier方案的简化版本,是当前Paillier方案的最优方案。在众多PHE方案中,Paillier方案由于效率较高、安全性证明完备的特点,在各大顶会和实际应用中被广泛使用,是隐私计算场景中最常用的PHE实例化方案之一。

其他的支持加法同态的密码系统还有DGK、OU和基于格密码的方案等。其中,DGK方案的密文空间相比Paillier更小,加解密效率更高,但由于算法的正确性和安全性在学术界没有得到广泛研究和验证,且实验表明算法的加解密部分存在缺陷,不推荐在工业界代码中使用。OU和基于格的加法同态计算效率更高,也是PHE不错的候选项。其中OU在方案中的使用频率相对较低,而基于格的方案密文大小较大,在一些特定场景有自身的优势。

四、Paillier原理

1.加法同态加密定义 在描述具体方案之前,我们先定义加法PHE。首先列举方案具有的所有算法。

  • KeyGen():密钥生成算法。用于产生加密数据的公钥PK(Public Key)和私钥SK(Secret Key),以及一些公开常数PP(Public Parameter);

  • Encrypt():加密算法。使用PK对用户数据Data进行加密,得到密文CT(Ciphertext);

  • Decrypt():解密算法。用于解密得到数据原文PT(Plaintext)。

HE除了加解密以外,还具有在密文上进行处理的能力,所以还应拥有“处理”算法。对于加法PHE,支持的算法有同态加以及同态标量乘(标量乘法可看作多次加法)。

  • Add():同态加算法。输入两个CT进行同态加运算。

  • ScalaMul():同态标量乘算法。输入一个CT和一个标量PT,计算CT的标量乘结果。

2.Paillier算法原理

密钥生成

加密

解密

同态加法

同态标量乘

加解密正确性

同态加法正确性

同态标量乘法正确性

注意,明文的标量乘法是加密域的指数运算。

安全性

Paillier方案满足加密方案的标准安全定义:语义安全,即在选择明文攻击下的密文的不可区分性(IND-CPA)。直观地说,就是密文不会泄露明文中的任意信息。方案安全性可以归约到判定性合数剩余假设(Decisional Composite Residuosity Assumption, DCRA),即给定一个合数n和整数z,判定z是否在n^2下是否是n次剩余是困难的。这个假设经过了几十年的充分研究,到目前为止还没有多项式时间的算法可以攻破,所以Paillier加密方案的安全性被认为相当可靠。

五、Python-Paillier算法演示

我们使用了 Python 实现的 paillier 算法来演示一些性质。你可以使用如下命令安装对应库

pip install phe

下面,我们使用 phe 演示 paillier 的同态加法和标量乘法的性质:

from phe import paillier # 开源库
import time # 做性能测试

# 测试paillier参数
print("默认私钥大小:",paillier.DEFAULT_KEYSIZE) #2048
# 生成公私钥
public_key,private_key = paillier.generate_paillier_keypair()
# 测试需要加密的数据
message_list = [3.1415926,100,-4.6e-12]
# 加密操作
time_start_enc = time.time()
encrypted_message_list = [public_key.encrypt(m) for m in message_list]
time_end_enc = time.time()
print("加密耗时s:",time_end_enc-time_start_enc)
# 解密操作
time_start_dec = time.time()
decrypted_message_list = [private_key.decrypt(c) for c in encrypted_message_list]
time_end_dec = time.time()
print("解密耗时s:",time_end_dec-time_start_dec)
# print(encrypted_message_list[0]) 
print("原始数据:",decrypted_message_list)

# 测试加法和乘法同态
a,b,c = encrypted_message_list # a,b,c分别为对应密文
# 该库中对运算符实现了重载,使得你可以调用原生加法的形式,实现密文加操作。其他类似

a_sum = a + 5 # 密文加明文
a_sub = a - 3 # 密文加明文的相反数
b_mul = b * 2 # 密文乘明文,数乘
c_div = c / -10.0 # 密文乘明文的倒数

# print("a:", a.ciphertext()) # 密文a的纯文本形式
# print("a_sum:", a_sum.ciphertext()) # 密文a_sum的纯文本形式

print("a+5=", private_key.decrypt(a_sum))
print("a-3", private_key.decrypt(a_sub))
print("b*1=", private_key.decrypt(b_mul))
print("c/-10.0=", private_key.decrypt(c_div))

# 密文加密文
print((private_key.decrypt(a)+private_key.decrypt(b))==private_key.decrypt(a+b)) 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2129740.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

树莓派5开发板-安装Raspberry Pi系统-学习记录1

树莓派5开发板介绍 树莓派5(Raspberry Pi 5)是树莓派系列最新的开发板,相较于前几代产品,它在性能、连接性和功能方面都有了显著提升。以下是树莓派5的一些主要特点: 处理器:树莓派5搭载了Broadcom BCM27…

如何基于gpt模型抢先打造成功的产品

来自:Python大数据分析 费弗里 ChatGPT、gpt3.5以及gpt4,已然成为当下现代社会中几乎人尽皆知的话题,而当此种现象级产品引爆全网,极大程度上吸引大众注意力的同时,有一些嗅觉灵敏的人及时抓住了机会,通过快…

【FreeRL】我的深度学习库构建思想

文章目录 前言参考python环境效果已复现结果 综述DQN.py(主要)算法实现参数修改细节实现显示训练,保存训练 Buffer.pyevaluate.pylearning_curves 前言 代码实现在:https://github.com/wild-firefox/FreeRL 欢迎star 参考 动手学强化学习e…

Coggle数据科学 | 小白学 RAG:Milvus 介绍与使用教程

本文来源公众号“Coggle数据科学”,仅用于学术分享,侵权删,干货满满。 原文链接:小白学 RAG:Milvus 介绍与使用教程 什么是Milvus? Milvus 是一款高性能、高扩展性的开源向量数据库,专为处理…

【阿一网络安全】如何让你的密码更安全?(三) - 散列函数

散列函数 散列函数(Hash Function,又称散列算法、哈希函数),是一种从任何一种数据中创建小的数字指纹的方法。 散列值 散列函数,把任意长的消息明文,压缩成摘要,使得数据量变小,将…

[数据集][目标检测]脊椎检测数据集VOC+YOLO格式1137张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1137 标注数量(xml文件个数):1137 标注数量(txt文件个数):1137 标注…

SpringBoot2:web开发常用功能实现及原理解析-上传与下载

文章目录 一、上传文件1、前端上传文件给Java接口2、Java接口上传文件给Java接口 二、下载文件1、前端从Java接口下载文件2、Java接口调用Java接口下载文件 一、上传文件 1、前端上传文件给Java接口 Controller接口 此接口支持上传单个文件和多个文件,并保存在本地…

基于小程序的教学辅助微信小程序设计+ssm(lw+演示+源码+运行)

教学辅助微信小程序 摘 要 随着移动应用技术的发展,越来越多的学生借助于移动手机、电脑完成生活中的事务,许多的传统行业也更加重视与互联网的结合,由于学生学习的压力越来越大,教学辅助是一个非常不错的教育平台,对…

人工智能(AI)领域各方向顶会和顶刊

在人工智能(AI)这个快速发展的领域,研究人员和从业者需要紧跟最新的研究动态和技术进展。顶级的会议和期刊是获取最新科研成果和交流思想的重要平台。以下是人工智能领域内不同方向的顶级会议和期刊概览。 顶级会议 人工智能基础与综合 A…

客厅无主灯设计:灯位布局与灯光灯具的和谐搭配

在现代家居设计中,客厅作为家庭活动的中心区域,其照明设计的重要性不言而喻。无主灯设计以其灵活多变、氛围营造独特的优势,逐渐成为客厅照明的热门选择。然而,如何合理规划灯位布局,并科学搭配灯光与灯具,…

20240913 每日AI必读资讯

AMD死战CUDA:我是一家软件公司 - AMD重大改变:重心将从硬件开发转向强调软件开发、API 和 AI 体验。 - 软件工程团队规模扩大了三倍,并且全力以赴投入软件开发 - AMD将自家已有5年历史的图形架构RDNA、计算架构CDNA重新整合在一起&#xf…

计算机毕业设计选题推荐-在线拍卖系统-Java/Python项目实战

✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

2024年9月13日 十二生肖 今日运势

小运播报:2024年9月13日,星期五,农历八月十一 (甲辰年癸酉月庚辰日),法定工作日。 红榜生肖:猴、鼠、鸡 需要注意:牛、兔、狗 喜神方位:西北方 财神方位:…

windows10通过coursier安装scala

第一步:安装Java 参考菜鸟教程安装Java: https://www.runoob.com/java/java-environment-setup.html#win-install 第二步:安装coursier 进入https://www.scala-lang.org/download/ 如下图所示: 第三步、确定jdk对应的scala版本…

小琳AI课堂:MASS模型——革新自然语言处理的预训练技术

大家好,这里是小琳AI课堂。今天我们来聊聊一个在自然语言处理(NLP)领域非常热门的话题——MASS模型,全称是Masked Sequence to Sequence Pre-training for Language Generation。这是华为诺亚方舟实验室在2019年提出的一种创新模型…

cpp-httplib的下载和使用

cpp-httplib的下载和使用 1.httplib 简介2. httplib 使用2.1 协议接口2.2 双端接口2.3 实际使用 3. 对Server中的Handler回调函数进行分析4. 最后 1.httplib 简介 cpp-httplib(也称为 httplib)是一个基于 C 的轻量级 HTTP 框架,它提供了简单…

统一建模语言UML之类图(Class Diagram)(表示|关系|举例)

文章目录 1.UML2.Class Diagram2.1 类图的表示2.2 类间的关系2.2.1 关联2.2.2 聚合2.2.3 组合2.2.4 泛化(继承)2.2.5 实现(接口实现)2.2.6 依赖 2.3 类图的作用 参考:Class Diagram | Unified Modeling Language (UML)…

2024/9/12 数学“回头看”之R(a)与R(a※)、分布函数、概率密度的特点

注意!这是充分必要条件。 分布函数性质 概率密度性质:

如何使用Jmeter关联influxDB?

一、添加"添加后端监听器" 二、后端监听器实现选择,"org. apache. jmeter. visualizers. backend. influxdb.InfluxdbBackendlistenerClient" 三、修改"influxdbUrl:自己的主机、application:取一个项目名" 四、influxDB&…

SAP B1 学习笔记 - 易混淆字段名(持续更新中)

背景 在 SAP B1 的单据中,由于同一单据时常对应着多个后台表单,且后台表单内包含的字段信息往往远大于单据显示出来的,在配置时经常出现多个字段混淆、无系统信息提示字段名模糊的情况,这里总结常见的易混淆难查找的后台字段名。…