【小沐学OpenGL】Ubuntu环境下glad的安装和使用

news2024/11/10 5:59:43

文章目录

  • 1、简介
    • 1.1 OpenGL简介
    • 1.2 glad简介
  • 2、安装glad
    • 2.1 手动安装glad
    • 2.2 git安装glad
    • 2.3 源码编译成glad单独库
  • 3、测试glad
    • 3.1 例子1
    • 3.2 例子2
  • 结语

1、简介

1.1 OpenGL简介

OpenGL作为图形界的工业标准,其仅仅定义了一组2D和3D图形接口API,而对于窗口管理、IO消息响应等并没有规定。也就是说,OpenGL依赖各平台提供用于渲染的context以及具体实现方式,而各平台提供的实现不尽相同。这些实现主要有:Windows平台下的WGL、Linux下的Mesa/GLX、Mac OS X下的Cocoa/NSGL,以及跨平台的GLUT、GLFW、SDL等等。

Mesa是Linux下的OpenGL实现。它提供了对AMD Radeon系列、Nvidia GPU、Intel i965, i945, i915以及VMWare虚拟GPU等多种硬件驱动的支持,同时也提供了对softpipe等多种软件驱动的支持。Mesa项目由Brian Paul于1993年8月创建,于1995年2月发布了第一个发行版,此后便受到越来越多的关注,如今Mesa已经是任何一个Linux版本首选的OpenGL实现。

GLX则是在Linux上用于提供GL与窗口交互、窗口管理等等的一组API。它的作用与Windows的WGL、Mac OS X的AGL以及针对OpenGL ES的EGL相似。在Linux上,窗口创建、管理等API遵循X Window接口,而GLX提供了OpenGL与X Window交互的办法。因此GLX也可以运用于其他使用X Window的平台,例如FreeBSD等。

在Debian/Ubuntu系统上,使用以下命令来安装Mesa和GLX:

sudo apt-get install libgl1-mesa-dev

安装OpenGL ES版本的Mesa:

sudo apt-get install libgles2-mesa-dev

对于OpenGL ES,EGL的安装如下:

sudo apt-get install libegl1-mesa-dev

查看安装的Mesa版本以及安装是否成功:

glxinfo | grep "OpenGL version"

在这里插入图片描述

1.2 glad简介

Windows平台由于微软的Direct3D存在,微软对OpenGL的支持并不积极。在大多数微软操作系统中所支持OpenGL版本还是1.0和1.1,仅支持固定管线API,对于现代使用OpenGL开发的程序并不友好。不过通过OpenGL的ARB扩展机制可以让我们访问到OpenGL的高级特性接口。

GLAD 是一个用于加载 OpenGL 函数指针的库,它简化了 OpenGL 函数的调用。你可以从 GLAD 的官方网站下载并生成适合你需求的 GLAD 配置。通常,你需要指定 OpenGL 的版本和配置文件类型(通常是核心模式)。生成后,将包含的头文件和源文件添加到你的项目中。

GLAD使用步骤:GLAD可以使OpenGL基础渲染变得简单,流程如下:

  • 1.初始化GLAD库,加载所有OpenGL函数指针。
  • 2.创建着色器并附加到着色器程序。
  • 3.构建缓冲对象并附加到顶点属性。
  • 4.使用着色器程序,利用渲染接口将缓冲对象按照指定图元类型渲染出来。

初始化GLAD库:常用接口如下:

  • int gladLoadGLLoader(GLADloadproc load):任何的OpenGL接口调用都必须在初始化GLAD库后才可以正常访问。如果成功的话,该接口将返回GL_TRUE,否则就会返回GL_FALSE。
  • 其中GLADloadproc函数声明如下:
    void* (GLADloadproc)(const char name)

2、安装glad

2.1 手动安装glad

配置GLAD需要设置OpenGL版本,可以通过glxinfo查看;

# 安装glxinfo
sudo apt install mesa-utils

# 查看OpenGL版本
glxinfo | grep "OpenGL version"

在这里插入图片描述
可以看到笔者的是3.1。

https://glad.dav1d.de/

在这里插入图片描述
下载glad源码如下:
在这里插入图片描述
在这里插入图片描述
通过CMake构建项目,其CMakeLists.txt添加如下代码:

add_library(glad glad/src/glad.c)
target_include_directories(glad  PUBLIC glad/include)
target_link_libraries(main glfw ${GL_LIBRARY} glad)

解压glad.zip如下:
在这里插入图片描述

  • 方法1:
cd glad/include
sudo mv glad/ /usr/local/include #将glad目录移动到/usr/local/include
sudo mv KHR/ /usr/local/include #将KHR目录移动到/usr/local/include

最后将glad/src目录下的glad.c文件拷贝一份到你的工程源码目录下,如跟main.cpp文件在同一个目录下。

  • 方法2:
    或者点击GENERRATE生成对应的zip文件并下载。解压这个zip文件,可以一个包含include和src的文件夹,将include下的文件移动到系统目录下:
sudo mv include/* /usr/local/include

src目录下的glad.c文件稍后放置在工程文件中。

mv <glad_path>/src/glad.c glad.c

2.2 git安装glad

git clone https://github.com/Dav1dde/glad.git
cd glad
cmake ./
make
sudo cp -a include /usr/local/

2.3 源码编译成glad单独库

  • (1)下载glad的include, src 到 3rdparty/glad/
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • (2)在 3rdparty/glad/里新建CMakeLists.txt文件如下:
cmake_minimum_required(VERSION 3.0)
project(Glad)

add_library(glad include/glad/glad.h src/glad.c)
target_include_directories(glad PUBLIC include/)
  • (3)在项目主 CMakeLists.txt 加入下面的代码.
cmake_minimum_required(VERSION 2.8.1)

project(my_app)

find_package(glfw3 REQUIRED)
add_subdirectory(3rdparty/glad)

add_executable(my_app main.cpp)
target_link_libraries(my_app glfw glad)

在这里插入图片描述

3、测试glad

3.1 例子1

新建CMakeLists.txt内容如下:

  • CMakeLists.txt:
cmake_minimum_required(VERSION 2.8.1)

project(my_project)

find_package(OpenGL REQUIRED)
add_library(glad src/glad.c)
target_include_directories(glad  PUBLIC include/glad)

set (CMAKE_CXX_LINK_EXECUTABLE "${CMAKE_CXX_LINK_EXECUTABLE} -ldl")

add_executable(main main.cpp)
target_link_libraries(main glfw ${GL_LIBRARY} glad)
  • main.cpp
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    glViewport(0, 0, width, height);
}

int main()
{
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
    //glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);

    GLFWwindow* window = glfwCreateWindow(800, 600, "Linux Opengl, yxy", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }
    glViewport(0, 0, 800, 600);

    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    while(!glfwWindowShouldClose(window))
    {
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);
        glfwSwapBuffers(window);
        glfwPollEvents();
    }
    glfwTerminate();
    return 0;
}

编译如下:
在这里插入图片描述

3.2 例子2

  • CMakeLists.txt:

CMakeLists.txt文件内容同上。

  • main.cpp
#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

const char *vertexShaderSource = "#version 330 core\n"
                                 "layout (location = 0) in vec3 aPos;\n"
                                 "void main()\n"
                                 "{\n"
                                 "   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n"
                                 "}\0";
const char *fragmentShaderSource = "#version 330 core\n"
                                   "out vec4 FragColor;\n"
                                   "void main()\n"
                                   "{\n"
                                   "   FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n"
                                   "}\n\0";

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // uncomment this statement to fix compilation on OS X
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }


    // build and compile our shader program
    // ------------------------------------
    // vertex shader
    int vertexShader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
    glCompileShader(vertexShader);
    // check for shader compile errors
    int success;
    char infoLog[512];
    glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
    // fragment shader
    int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
    glCompileShader(fragmentShader);
    // check for shader compile errors
    glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
    }
    // link shaders
    int shaderProgram = glCreateProgram();
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);
    glLinkProgram(shaderProgram);
    // check for linking errors
    glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
    if (!success) {
        glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
        std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
    }
    glDeleteShader(vertexShader);
    glDeleteShader(fragmentShader);

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float vertices[] = {
        0.5f,  0.5f, 0.0f,  // top right
        0.5f, -0.5f, 0.0f,  // bottom right
        -0.5f, -0.5f, 0.0f,  // bottom left
        -0.5f,  0.5f, 0.0f   // top left
    };
    unsigned int indices[] = {  // note that we start from 0!
        0, 1, 3,  // first Triangle
        1, 2, 3   // second Triangle
    };
    unsigned int VBO, VAO, EBO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);
    // bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s).
    glBindVertexArray(VAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);

    // note that this is allowed, the call to glVertexAttribPointer registered VBO as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind
    glBindBuffer(GL_ARRAY_BUFFER, 0);

    // remember: do NOT unbind the EBO while a VAO is active as the bound element buffer object IS stored in the VAO; keep the EBO bound.
    //glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

    // You can unbind the VAO afterwards so other VAO calls won't accidentally modify this VAO, but this rarely happens. Modifying other
    // VAOs requires a call to glBindVertexArray anyways so we generally don't unbind VAOs (nor VBOs) when it's not directly necessary.
    glBindVertexArray(0);


    // uncomment this call to draw in wireframe polygons.
    //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        // draw our first triangle
        glUseProgram(shaderProgram);
        glBindVertexArray(VAO); // seeing as we only have a single VAO there's no need to bind it every time, but we'll do so to keep things a bit more organized
        //glDrawArrays(GL_TRIANGLES, 0, 6);
        glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
        // glBindVertexArray(0); // no need to unbind it every time

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteBuffers(1, &EBO);

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

在这里插入图片描述

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(✿◡‿◡)
感谢各位大佬童鞋们的支持!( ´ ▽´ )ノ ( ´ ▽´)っ!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2128609.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【最新】全球各国新冠疫情数据集(2020.1-2024.8)

新冠疫情&#xff0c;即新型冠状病毒引发的肺炎疫情&#xff0c;自2019年底首次爆发以来&#xff0c;对全球公共卫生、经济和社会生活产生了深远影响。本次分享的是全球新冠疫情数据&#xff0c;世界各国的新冠疫情数据呈现出复杂多变的态势&#xff0c;不同国家和地区的疫情严…

【软件设计师真题】下午题第四大题---算法设计

系列文章目录 1.【软考之软件设计师】PPT课件 2.【软考之软件设计师】学习笔记 3.【软件设计师真题】下午题第一大题—数据流图设计 4.【软件设计师真题】下午题第二大题—数据库设计 5.【软件设计师真题】下午题第三大题—UML 分析与设计 6.【软件设计师真题】下午题第四…

UEFI学习笔记(八):Memory Services

UEFI学习笔记&#xff08;八&#xff09;&#xff1a;Memory Services 一、内存服务概况1、PEI阶段2、DXE阶段&#xff08;系统内存&#xff09;3、SMM阶段 二、HOB概述1、为什么在PEI阶段要引入HOB&#xff1f;2、HOB的类型 三、MEMORY类型四、内存分布1、PEI内存分布2、DXE内…

上海亚商投顾:沪指探底回升 华为产业链午后爆发

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 沪指昨日探底回升&#xff0c;深成指、创业板指盘中跌逾1%&#xff0c;午后集体拉升翻红。华为产业链午后走强…

一天一道算法题day05

目录 合并两个有序链表 什么是链表&#xff1f; 链表的基本概念&#xff1a; Java 中的链表实现 Java 内置 LinkedList 类&#xff1a; 回到题目 解题思路 代码实现 总结&#xff1a; 合并两个有序链表 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼…

【几维安全-注册_登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞…

设计模式之建造者模式(通俗易懂--代码辅助理解【Java版】)

文章目录 设计模式概述1、建造者模式2、建造者模式使用场景3、优点4、缺点5、主要角色6、代码示例&#xff1a;1&#xff09;实现要求2&#xff09;UML图3)实现步骤&#xff1a;1&#xff09;创建一个表示食物条目和食物包装的接口2&#xff09;创建实现Packing接口的实体类3&a…

828华为云征文 | 深入解析华为云X实例保障云上业务安全的关键策略

前言 在云计算快速发展的背景下&#xff0c;安全问题一直是企业上云过程中关注的焦点。随着数据迁移至云端&#xff0c;企业对云计算平台的安全性能提出了更高要求&#xff0c;特别是如何防止数据泄露、网络攻击、以及确保合规性等问题至关重要。华为云作为全球领先的云服务提供…

分类预测|基于哈里斯鹰优化最小二乘支持向量机的数据分类预测Matlab程序HHO-LSSVM多特征输入多类别输出

分类预测|基于哈里斯鹰优化最小二乘支持向量机的数据分类预测Matlab程序HHO-LSSVM多特征输入多类别输出 文章目录 一、基本原理1. 哈里斯鹰优化算法&#xff08;HHO&#xff09;2. 最小二乘支持向量机&#xff08;LSSVM&#xff09;HHO-LSSVM模型流程总结 二、实验结果三、核心…

2024/9/12 408“回头看”之文件元数据和索引节点

文件元数据&#xff1a; 索引节点&#xff1a; 把所有文件元数据放在一起&#xff0c;其中只保存文件名和索引节点号&#xff0c;然后通过索引节点来指向其他信息&#xff1a; 索引节点放在外存。 未采用索引节点&#xff1a;找目录项得一个磁盘块、一个磁盘块的找&#xff…

通用四期ARM架构银河麒麟桌面操作系统V10【安装、配置FTP客户端】

一、操作环境 服务端&#xff1a;银河麒麟桌面操作系统V10SP1 客户端&#xff1a;银河麒麟桌面操作系统V10SP1 二、服务端配置 注&#xff1a;以下命令均在终端执行 鼠标点击桌面右键&#xff0c;选择打开终端 操作步骤&#xff1a; 1、安装vsftpd软件&#xff1a;如果提…

【运维监控】Prometheus+grafana+kafka_exporter监控kafka运行情况

本示例通过kafka_exporter收集kafka的监控指标&#xff0c;然后将数据收集到prometheus中&#xff0c;最后通过grafana的dashboard导入模板进行可视化。本示例分为四个部分&#xff0c;即prometheus、grafana部署、kafka_exporter部署与配置和最后的集成。说明&#xff1a;本示…

智科python毕业设计方向汇总

文章目录 &#x1f6a9; 1 前言1.1 选题注意事项1.1.1 难度怎么把控&#xff1f;1.1.2 题目名称怎么取&#xff1f; 1.2 开题选题推荐1.2.1 起因1.2.2 核心- 如何避坑(重中之重)1.2.3 怎么办呢&#xff1f; &#x1f6a9;2 选题概览&#x1f6a9; 3 项目概览题目1 : 深度学习社…

12、xinference部署与自定义模型

1、环境创建 创建虚拟环境 conda create --name xinference python3.10.9激活虚拟环境 conda activate xinference2、安装文件 官网&#xff1a;https://inference.readthedocs.io/zh-cn/latest/getting_started/installation.html pip install "xinference[transfor…

DM数据库报错集合

DM数据库报错集合 DMHS安装部署报错 Oracle端的报错 启动dmhs时失败并报错 解决方法&#xff1a;这里就是没有密钥key&#xff0c;需要拥有DM数据库对应的key&#xff0c;然后将其命名为dmhs.key&#xff0c;并放在dmhs安装路径的bin目录下&#xff0c;就可直接运行 Orac…

经典任务损失函数与评价指标

损失函数_Lcm_Tech的博客-CSDN博客 1. 回归任务损失函数&#xff08;MAE、MSE&#xff09; 【损失函数】MSE, MAE, Huber loss详解_mse损失函数-CSDN博客 【回归损失函数】L1&#xff08;MAE&#xff09;、L2&#xff08;MSE&#xff09;、Smooth L1 Loss详解_mae损失函数-CS…

Qt连接mysql数据库---kalrry

Qt连接mysql数据库---kalrry 前言解决方法1解决方法2 前言 Qt自带SQLite数据库驱动很好用&#xff0c;但如果甲方要求必须使用MySql&#xff0c;那么坑就来了(本教程在Qt5版本下测试成功&#xff0c;Qt6需要自行尝试) 以下是记录解决Qt连接mysql的驱动问题 解决方法1 使用my…

企业需要多少六西格玛绿带?

在探讨企业的六西格玛绿带专业人员需求时&#xff0c;我们需要理解这个术语的背景和含义。六西格玛是一种质量改进方法&#xff0c;通过数据驱动的方法来解决过程问题和提高效率。六西格玛绿带是一种专业技能的认证&#xff0c;代表了对于六西格玛方法的深入理解和实践经验。 在…

超声波清洗机洗眼镜效果好吗?超声波清洗机洗眼镜推荐

眼镜是我们日常生活中不可或缺的伙伴。然而&#xff0c;在长时间使用之后&#xff0c;眼镜上往往会沾染各种污垢&#xff0c;这些污渍不仅影响视觉效果&#xff0c;还可能引起眼部不适。因此&#xff0c;清洁眼镜显得尤为重要。幸运的是&#xff0c;有了超声波清洗机这一工具&a…

春招审核新策略:Spring Boot系统实现

3系统分析 3.1可行性分析 通过对本大学生入学审核系统实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本大学生入学审核系统采用Spring Boot框架&#xff0c;JA…