OrionX GPU算力池助力AI OCR场景应用

news2025/1/22 14:49:29

01 AI OCR的历史及概念

OCR(Optical Character Recognition,光学字符识别)是指采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程。

2012年AlexNet在ImageNet竞赛夺冠以来,深度学习方法开始在图像视频领域大幅超越传统算法,基于CV(计算机视觉)和NLP(自然语言处理)卷积神经网络和基于长短期记忆的方法开始扩张到OCR领域。在AI OCR系统中,人工神经网络主要充当特征提取器和分类器的功能,输入是字符图像,输出是识别结果,且识别率很高,不需要花大量时间去设计字符特征。

OCR处理分为:图像预处理、文本检测(Detection)、文本识别(Recognition)这三大步骤。

图像预处理,用于对待处理的原始图像进行一些矫正操作,以助于降低后续的检测和识别难度。例如调整图像对比度、旋转对齐、进行局部裁剪、折痕和墨点等干扰信息的淡化等。现有多数深度学习识别算法具体流程包括图像校正、特征提取、序列预测等模块,流程如图所示:

文件检测算法,CTPN是在ECCV 2016提出的一种文字检测算法,是目前流传最广、影响最大的开源文本检测模型,可以检测水平或微斜的文本行。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字。CTPN模型主要包括三个部分,分别是卷积层、Bi-LSTM层、全连接层,其结构如下图所示:

文字识别,使用CRNN网络(循环卷积神经网络)的技术思想是用深度卷积来生成图像基础特征,再使用Bi-LSTM循环网络(双向长短时记忆网络,能吸收上下文语义信息)进行时序特征训练(这一步利用文本序列的前后特征能有效提升效果),最后引入CTC损失函数来实现端对端的不定长序列识别,解决训练时字符无法对齐的问题。CRNN网络结构包含三部分,从下到上依次为:卷积层、循环层、转录层。其结构如下图所示:

02 AI OCR助力企业降本增效

传统财务报销场景下,企业员工在日常差旅报销时,需要手动将火车票、住宿费发票中的金额、坐席等信息录入到系统中。会计再根据员工录入的信息,核验员工职级与报销标准是否匹配。以往手动录入信息的方式需要员工反复核对信息的准确性及完整性,同时审核人员也需要花费大量的时间进行人工校对,极大影响了工作效率。

当前,随着企业新发展阶段需要,使用人工智能等技术助力企业提高效率,降低成本,已成为企业数智化转型的战略方向。

很多企业已开始将银行单证处理、财务发票报销等场景,从原来人工手动处理方式,转换到为使用AI OCR系统处理方式。用户通过前端系统上送图片文件到AI OCR系统,AI OCR系统通过人工智能深度算法模型对非结构化的图片特征检测、识别类型、提取文字、形成结构化数据,再经过智能审核系统查重验真,最后将结果数据发送给前端系统自动填单。使用AI OCR系统,可以极大的提高人工录入准确率、降低过程中的人工错误、极大提高了财务报销场景的处理效率和准确率。

AI OCR系统,大量使用深度学习模型,GPU作为AI算力重要引擎,利用并行计算架构,极大地提升了提高识别准确率和速度,这大大帮助企业实现流程自动化处理、节省人员成本、高效率处理数据信息。

03 AI OCR应用痛点

随着AI OCR技术的大量应用及需求增加,产生了大量算力需求。然而当前的GPU算力资源大多是都是分配给单个项目,存在着大量浪费和运维难题:

  • GPU算力资源目前采用物理机模式或单业务系统分配,分配粒度粗、利用率低;
  • GPU算力资源分配不灵活,不能有效共享和安全隔离分配算力资源;
  • 没有统一GPU算力资源管理平台,平台团队无法及时和周期性掌握GPU资源利用率和任务运行情况;
  • GPU算力资源在机柜资源、用电等,生命周期内的综合运营成本非常高;
  • 硬件采购流程周期长,不能及时响应业务场景创新需求;新采购的GPU算力资源,都要按照系统需要安装部署、安全加固、定期升级,平台团队工作强度高。

04 GPU池化助力AI OCR技术高效应用

趋动科技致力于为用户提供国际领先的AI算力资源池化解决方案,并将GPU资源池化能力拓展到整个数据中心。

OrionX通过软件定义AI算力,颠覆了原有的AI应用直接调用物理GPU的架构,增加软件层,将AI应用与物理GPU解耦合,通过构建GPU资源池,对资源池中的GPU资源进行统一管理、维护和调配,资源池的大小可以根据系统管理需求而定,比如,可以将数据中心内所有的物理GPU纳入资源池中,也可以将一个GPU服务器作为一个资源池。该架构实现了GPU资源池化,让用户高效、智能、灵活地使用GPU资源,达到了降本增效的目的。

OrionX还支持“隔空取物”功能,即OrionX支持将虚拟机或者容器运行在一台没有物理GPU的服务器上。用户可以通过计算机网络,透明地使用其他服务器上的GPU 资源,且无需修改该虚拟机或者容器内 AI 应用的代码。也是通过这个功能,OrionX 帮助用户实现了数据中心级的 GPU 资源池,实现了AI 应用和 GPU 物理资源的解耦合,AI 应用在一个不满足训练条件的纯 CUP 服务器上,也一样能够快速调集多个 GPU 卡完成训练任务。

05 OrionX创新点及收益

1 改变GPU算力资源使用方式

通过软件定义算力的方式,将传统GPU资源以整卡为单位进行分配,变为以算力1%,显存1MB为基本单位进行资源提供,实现GPU按需分配,整体利用率提升明显。

2 GPU算力资源池化

支持GPU的跨节点调用,AI应用可以部署到数据中心的任意位置,不管所在的节点上有没有GPU。GPU资源供应范围从单个节点扩展到由网络互联起来的整个数据中心,优化管理模式,简化运维操作。

3 GPU资源云化

数据中心内GPU资源按需调用,动态伸缩,用完释放。AI应用可以根据负载需求调用任意大小的GPU,甚至可以聚合多个物理节点的GPU;在容器或虚机创建之后,仍然可以调整虚拟GPU的数量和大小;在AI应用停止的时候,立刻释放GPU资源回到整个GPU资源池,以便于资源高效流转,充分利用。

06 OrionX预期收益

1 提升AI场景效能

通过实现GPU池化,实现让用户共享数据中心内所有服务器上的GPU,大幅提升资源利用率、降低GPU服务器采购成本、机柜密度。AI相关业务人员不必再关心底层资源状况,能够专注于更有价值的业务层面,让应用开发变得更加便捷和简洁。

2 提升AI应用支撑能力

通过GPU资源切分和资源按需分配,AI推理场景下有利于多模型并行,业务运行效率显著提高,在同等AI算力条件下可以支撑数倍业务量的弹性扩展。

3 加速项目周期

GPU资源池化后支持动态秒级分配和回收GPU算力和显存资源,大大提升GPU资源分配效率。同时,AI程序代码无需改动,这可以有效提高项目上线时间。

4 优化GPU算力资源使用方式

通过软件定义算力的方式,将传统GPU资源以整卡为单位进行分配,变为以算力1%,显存1MB为基本单位进行资源提供,实现GPU按需分配,整体利用率提升明显。

5 提升运维管理人效提升

OrionX AI GPU算力资源池化技术提供统一UI管理运维页面。通过管理终端,运维人员可以快速可视化的采集所有GPU服务器和GPU资源的分配情况和运行利用率,且支持定期输出GPU资源池运行报表。资源池化、管理全流程、系统平台级、运维可视化的管理模式,收缩的边界范围,都将加倍提升管理效率。

6 节能减排

归功于OrionX调度引擎的高效轮转,可大幅提升AI应用支撑数量,并由此降低GPU服务器采购成本及相应服务器能源消耗和机房环境能耗成本,减少业务系统总体运营成本,提升投资效能,助力国家2050双碳减排目标实现。

建设AI算力资源池可以更好支持人工智能场景在企业经营数智化升级过程中业务系统创新的敏捷增长,具体表现在提升基础设施利用率、减少设备运行和人员运维的费用、减少重复建设、优化资源配置、提升服务能力等,能有效加速客户在人工智能领域的创新速度!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2128139.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java 冒泡排序

1&#xff0e;冒泡排序是最出名的排序算法之一&#xff0c;总共有八大排序&#xff01; 2&#xff0e;冒泡排序的算法相对简单&#xff0c;两层循环&#xff0c;外层冒泡轮数&#xff0c;里层以此比较。 如下&#xff1a; j < array.length - 1-i的作用&#xff1a;下一轮比…

内衣洗衣机哪个牌子好用?汇总五款主流硬核内衣洗衣机

内衣洗衣机是近年来备受关注的小家电产品&#xff0c;虽然市场火爆&#xff0c;但还是存在大部分人对内衣洗衣机的不了解&#xff0c;会购买到质量差、清洗效果不好的内衣洗衣机&#xff0c;面对众多内衣洗衣机品牌&#xff0c;到底内衣迷你洗衣机什么牌子好呢&#xff1f;今天…

多线程篇五——wait和notify

多线程篇五——wait和notify 如笔者理解有误&#xff0c;欢迎交流指正⭐ 线程的执行先后顺序难以预料【抢占式执行】&#xff0c;但是实际开发中我们会需要掌握当下线程的执行顺序. 这就是wait和notify的作用.【都是Object方法即随便定义一个对象豆可以使用wait和notify】 wa…

跟李沐学AI:长短期记忆网络LSTM

输入们、遗忘门和输出门 LSTM引入输入门、忘记门和输出门 输入门计算公式为&#xff1a;。 遗忘门计算公式为&#xff1a;。 输出门计算公式为&#xff1a;。 它们由三个具有sigmoid激活函数的全连接层处理&#xff0c; 以计算输入门、遗忘门和输出门的值。 因此&#xff0c…

为什么不推荐使用Stack

Java已不推荐使用Stack&#xff0c;而是推荐使用更高效的ArrayDeque 为什么不推荐使用 性能低&#xff1a;是因为 Stack 继承自 Vector&#xff0c; 而 Vector 在每个方法中都加了锁。由于需要兼容老的项目&#xff0c;很难在原有的基础上进行优化&#xff0c;因此 Vector 就被…

鸟类目标检测系统源码分享

鸟类目标检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…

亲测好用,ChatGPT 3.5/4.0新手使用手册~

都知道ChatGPT很强大&#xff0c;聊聊天、写论文、搞翻译、写代码、写文案、审合同等等&#xff0c;无所不能~ 那么到底怎么使用呢&#xff1f;其实很简单了&#xff0c;国内AI产品发展也很快&#xff0c;很多都很好用了~ 我一直在用&#xff0c;建议收藏下来~ 有最先进、最…

RocketMQ出现The broker does not support consumer to filter message by SQL92

在使用RocketMQ使用SQL过滤消息的时候&#xff0c;出现下面错误 原因是我们的配置文件没有开启SQL过滤功能&#xff0c;我们需要在每个配置文件中添加下面命令 #开启过滤消息时支持SQL92标准 enablePropertyFiltertrue接着我们重启namesrv与broker服务就解决问题 # 1.进入bi…

Robust Image Denoising through Adversarial Frequency Mixup

基于对抗性混频的鲁棒图像去噪 论文链接&#xff1a;https://openaccess.thecvf.com/CVPR2024/Ryou_Robust_Image_Denoising_through_Adversarial_Frequency_Mixup 项目链接&#xff1a;https://github.com/dhryougit/AFM Abstract 基于深度神经网络的图像去噪方法经常与训练…

哈希表的底层实现(1)---C++版

目录 哈希表的基本原理 哈希表的优点 哈希表的缺点 应用场景 闭散列法 开散列法 开放定值法Open Addressing——线性探测的模拟实现 超大重点部分评析 链地址法Separate Chaining——哈希桶的模拟实现 哈希表&#xff08;Hash Table&#xff09;是一种数据结构&#x…

STM32G070 CubeMX配置多通道/单通道ADC+DMA流程 LL库

基础配置不再赘述&#xff0c;时钟这些根据硬件来配置 多通道ADCDMA配置图&#xff1a; 程序配置&#xff1a; 调试查看内存数据&#xff0c;硬件上将PA1接到GND&#xff0c;PA2接到3V3 采集的数据会循环覆盖内存 问题&#xff1a;代码里先初始化ADC_IN1&#xff0c;再初…

Spring扩展点系列-ApplicationContextAwareProcessor

文章目录 简介源码分析示例代码示例一&#xff1a;扩展点的执行顺序运行示例一 示例二&#xff1a;获取配置文件值配置文件application.properties内容定义工具类ConfigUtilcontroller测试调用运行示例二 示例三&#xff1a;实现ResourceLoaderAware读取文件ExtendResourceLoad…

CleanClip - 「CleanClip」是一款专为 Mac 设计的桌面剪贴板工具

官方介绍 欢迎使用 CleanClip —— Mac 上最简洁高效的剪贴板管理工具。CleanClip 专为追求简约操作体验的用户设计&#xff0c;它帮助用户记录系统剪贴板上的内容&#xff0c;并提供强大的分类管理能力&#xff0c;帮助你整理复制的内容&#xff0c;提高办公效率。 智能简洁&…

MAVEN如何导入项目

工作中经常需要导入他人的项目&#xff0c;那么如何导入呢&#xff1f; 1&#xff0c; 选择Maven面板&#xff0c;点 2&#xff0c;选中对应项目的pom.xml&#xff0c;双击即可 3&#xff0c;如果没有maven面板&#xff0c;可以选择view->Appearnce->Tool Window Bars…

HTML5元素定位

1.元素定位 为了实现网页整体布局&#xff0c;我们先要知道&#xff0c;一个元素&#xff0c;是如何定位到页面上的某个位置的&#xff0c;这就是元素定位。 元素定位有四种&#xff0c;可以使用position样式来设置元素定位&#xff0c;所以此属性值有四种&#xff1a; stat…

MybatisPlus新增数据时怎么返回新增数据的id

问&#xff1a;MybatisPlus新增数据时怎么返回新增数据的id&#xff1f;答&#xff1a;当插入操作执行后&#xff0c;MyBatis Plus会自动获取生成的ID并将其设置到传入的实体类对象的id属性中。当然&#xff0c;这需要你的表字段ID是自增的 实体类代码 public class Sites {p…

东风德纳携手纷享销客打造汽车零部件行业营销数智化新标杆

为进一步提升数字化经营管理水平&#xff0c;加速数字化转型&#xff0c;推进“品牌向上”战略落实落地&#xff0c;9月2日&#xff0c;东风德纳车桥有限公司召开CRM项目启动会&#xff0c;携手纷享销客&#xff0c;打造汽车零部件行业营销数智化标杆工程。东风德纳车桥总经理陆…

高效Flutter应用开发:GetX状态管理实战技巧

探索GetX状态管理的使用 前言 在之前的文章中&#xff0c;我们详细介绍了 Flutter 应用中的状态管理&#xff0c;setState、Provider库以及Bloc的使用。 本篇我们继续介绍另一个实现状态管理的方式&#xff1a;GetX。 一、GetX状态管理 基础介绍 GetX 是一个在 Flutter 中…

【原创】【总结】【C++类的设计要点】一道十分典型的含继承与虚函数的类设计题

设计类时的要点 1构造函数与析构函数&#xff1a;先在public中写上构造函数与析构函数 2成员函数&#xff1a;根据题目要求在public中声明成员函数&#xff1b;成员函数的实现在类内类外均可&#xff0c;注意若在类外实现时用::符号表明是哪个类的函数 3数据成员&#xff1a;关…

STM32L051K8U6-HAL-串口中断控制灯闪烁速度

HAL三步法&#xff1a; 1、配置下载线 2、配置晶振 3、配置时钟 4、 配置灯引脚属性为输出模式。并设置标签为LED 5、配置串口1 串口常用函数说明&#xff1a; 需要实现的伪代码&#xff1a; 示例&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1u6FamKgZhvcEsFAdgGeaw…