往期知识点记录:
- 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总
- 轻内核A核源码分析系列一 数据结构-双向循环链表
- 轻内核A核源码分析系列二 数据结构-位图操作
- 轻内核A核源码分析系列三 物理内存(1)
- 轻内核A核源码分析系列三 物理内存(2)
- 轻内核A核源码分析系列四(1)虚拟内存进程空间编号
- 轻内核A核源码分析系列四(2) 虚拟内存
- 轻内核A核源码分析系列四(3) 虚拟内存
- 轻内核A核源码分析系列五 虚实映射(1)基础概念
- 轻内核A核源码分析系列五 虚实映射(2)虚实映射初始化
- 轻内核A核源码分析系列五 虚实映射(3)虚拟物理内存映射
- 轻内核A核源码分析系列五 虚实映射(5)虚实映射解除
- 轻内核A核源码分析系列五 虚实映射(6)虚拟映射修改转移
- 轻内核A核源码分析系列五 虚实映射(7)虚实映射Flag属性
- 轻内核A核源码分析系列六 MMU协处理器(1)
- 轻内核A核源码分析系列六 MMU协处理器(2)
- 轻内核A核源码分析系列七 进程管理 (1)
- 轻内核A核源码分析系列七 进程管理 (2)
- 轻内核A核源码分析系列七 进程管理 (3)
- 持续更新中……
在学习函数LOS_ArchMmuMap()
代码时,我们已经了解了虚拟内存如何映射到物理内存,在映射的时候,可以通过UINT 32 flags
参数定一些标签属性信息。本节,我们具体了解下内存标签属性信息。先了解下MMU标签属性,然后看看映射内存区间时的映射虚实信息,最后了解下属性信息转换函数。
7.1 MMU标签属性
在映射的时候,对于内存页可以指定一些内存属性,比如权限、内存类型、缓存策略等等。更多信息参考ARM官网资料《ARM® Cortex™-A Series Version: 4.0 Programmer’s Guide》,我们只快速摘录些关键信息。L1页表项的格式如下图所示,其中Type extension (TEX)
, Shareable (S)
, Access Permission (AP, APX)
、 Cacheable (C)
、 Bufferable (B)
位表示内存属性信息。在arch\arm\arm\include\los_mmu_descriptor_v6.h
文件中定义了MMU L1页表内存属性相关的宏,如下。
/* TEX CB */
#define MMU_DESCRIPTOR_L1_TEX_SHIFT 12 /* type extension field shift */
#define MMU_DESCRIPTOR_L1_TEX(x) \
((x) << MMU_DESCRIPTOR_L1_TEX_SHIFT) /* type extension */
#define MMU_DESCRIPTOR_L1_TYPE_STRONGLY_ORDERED \
(MMU_DESCRIPTOR_L1_TEX(MMU_DESCRIPTOR_TEX_0) | MMU_DESCRIPTOR_NON_CACHEABLE)
#define MMU_DESCRIPTOR_L1_TYPE_NORMAL_NOCACHE \
(MMU_DESCRIPTOR_L1_TEX(MMU_DESCRIPTOR_TEX_1) | MMU_DESCRIPTOR_NON_CACHEABLE)
#define MMU_DESCRIPTOR_L1_TYPE_DEVICE_SHARED \
(MMU_DESCRIPTOR_L1_TEX(MMU_DESCRIPTOR_TEX_0) | MMU_DESCRIPTOR_WRITE_BACK_ALLOCATE)
#define MMU_DESCRIPTOR_L1_TYPE_DEVICE_NON_SHARED \
(MMU_DESCRIPTOR_L1_TEX(MMU_DESCRIPTOR_TEX_2) | MMU_DESCRIPTOR_NON_CACHEABLE)
#define MMU_DESCRIPTOR_L1_TYPE_NORMAL_WRITE_BACK_ALLOCATE \
(MMU_DESCRIPTOR_L1_TEX(MMU_DESCRIPTOR_TEX_1) | MMU_DESCRIPTOR_WRITE_BACK_NO_ALLOCATE)
#define MMU_DESCRIPTOR_L1_TEX_TYPE_MASK \
(MMU_DESCRIPTOR_L1_TEX(MMU_DESCRIPTOR_TEX_MASK) | MMU_DESCRIPTOR_WRITE_BACK_NO_ALLOCATE)
#define MMU_DESCRIPTOR_L1_AP2_SHIFT 15
#define MMU_DESCRIPTOR_L1_AP2(x) ((x) << MMU_DESCRIPTOR_L1_AP2_SHIFT)
#define MMU_DESCRIPTOR_L1_AP2_0 (MMU_DESCRIPTOR_L1_AP2(0))
#define MMU_DESCRIPTOR_L1_AP2_1 (MMU_DESCRIPTOR_L1_AP2(1))
#define MMU_DESCRIPTOR_L1_AP01_SHIFT 10
#define MMU_DESCRIPTOR_L1_AP01(x) ((x) << MMU_DESCRIPTOR_L1_AP01_SHIFT)
#define MMU_DESCRIPTOR_L1_AP01_0 (MMU_DESCRIPTOR_L1_AP01(0))
#define MMU_DESCRIPTOR_L1_AP01_1 (MMU_DESCRIPTOR_L1_AP01(1))
#define MMU_DESCRIPTOR_L1_AP01_3 (MMU_DESCRIPTOR_L1_AP01(3))
#define MMU_DESCRIPTOR_L1_AP_P_NA_U_NA (MMU_DESCRIPTOR_L1_AP2_0 | MMU_DESCRIPTOR_L1_AP01_0)
#define MMU_DESCRIPTOR_L1_AP_P_RW_U_RW (MMU_DESCRIPTOR_L1_AP2_0 | MMU_DESCRIPTOR_L1_AP01_3)
#define MMU_DESCRIPTOR_L1_AP_P_RW_U_NA (MMU_DESCRIPTOR_L1_AP2_0 | MMU_DESCRIPTOR_L1_AP01_1)
#define MMU_DESCRIPTOR_L1_AP_P_RO_U_RO (MMU_DESCRIPTOR_L1_AP2_1 | MMU_DESCRIPTOR_L1_AP01_3)
#define MMU_DESCRIPTOR_L1_AP_P_RO_U_NA (MMU_DESCRIPTOR_L1_AP2_1 | MMU_DESCRIPTOR_L1_AP01_1)
#define MMU_DESCRIPTOR_L1_AP_MASK (MMU_DESCRIPTOR_L1_AP2_1 | MMU_DESCRIPTOR_L1_AP01_3)
L2页表项的格式如下图所示。在arch\arm\arm\include\los_mmu_descriptor_v6.h
文件中定义了MMU L2页表内存属性相关的宏,如下。
#define MMU_DESCRIPTOR_L2_TEX_SHIFT 6 /* type extension field shift */
#define MMU_DESCRIPTOR_L2_TEX(x) \
((x) << MMU_DESCRIPTOR_L2_TEX_SHIFT) /* type extension */
#define MMU_DESCRIPTOR_L2_TYPE_STRONGLY_ORDERED \
(MMU_DESCRIPTOR_L2_TEX(MMU_DESCRIPTOR_TEX_0) | MMU_DESCRIPTOR_NON_CACHEABLE)
#define MMU_DESCRIPTOR_L2_TYPE_NORMAL_NOCACHE \
(MMU_DESCRIPTOR_L2_TEX(MMU_DESCRIPTOR_TEX_1) | MMU_DESCRIPTOR_NON_CACHEABLE)
#define MMU_DESCRIPTOR_L2_TYPE_DEVICE_SHARED \
(MMU_DESCRIPTOR_L2_TEX(MMU_DESCRIPTOR_TEX_0) | MMU_DESCRIPTOR_WRITE_BACK_ALLOCATE)
#define MMU_DESCRIPTOR_L2_TYPE_DEVICE_NON_SHARED \
(MMU_DESCRIPTOR_L2_TEX(MMU_DESCRIPTOR_TEX_2) | MMU_DESCRIPTOR_NON_CACHEABLE)
#define MMU_DESCRIPTOR_L2_TYPE_NORMAL_WRITE_BACK_ALLOCATE \
(MMU_DESCRIPTOR_L2_TEX(MMU_DESCRIPTOR_TEX_1) | MMU_DESCRIPTOR_WRITE_BACK_NO_ALLOCATE)
#define MMU_DESCRIPTOR_L2_TEX_TYPE_MASK \
(MMU_DESCRIPTOR_L2_TEX(MMU_DESCRIPTOR_TEX_MASK) | MMU_DESCRIPTOR_WRITE_BACK_NO_ALLOCATE)
#define MMU_DESCRIPTOR_L2_AP2_SHIFT 9
#define MMU_DESCRIPTOR_L2_AP2(x) ((x) << MMU_DESCRIPTOR_L2_AP2_SHIFT)
#define MMU_DESCRIPTOR_L2_AP2_0 (MMU_DESCRIPTOR_L2_AP2(0))
#define MMU_DESCRIPTOR_L2_AP2_1 (MMU_DESCRIPTOR_L2_AP2(1))
#define MMU_DESCRIPTOR_L2_AP01_SHIFT 4
#define MMU_DESCRIPTOR_L2_AP01(x) ((x) << MMU_DESCRIPTOR_L2_AP01_SHIFT)
#define MMU_DESCRIPTOR_L2_AP01_0 (MMU_DESCRIPTOR_L2_AP01(0))
#define MMU_DESCRIPTOR_L2_AP01_1 (MMU_DESCRIPTOR_L2_AP01(1))
#define MMU_DESCRIPTOR_L2_AP01_3 (MMU_DESCRIPTOR_L2_AP01(3))
#define MMU_DESCRIPTOR_L2_AP_P_NA_U_NA (MMU_DESCRIPTOR_L2_AP2_0 | MMU_DESCRIPTOR_L2_AP01_0)
#define MMU_DESCRIPTOR_L2_AP_P_RW_U_RW (MMU_DESCRIPTOR_L2_AP2_0 | MMU_DESCRIPTOR_L2_AP01_3)
#define MMU_DESCRIPTOR_L2_AP_P_RW_U_NA (MMU_DESCRIPTOR_L2_AP2_0 | MMU_DESCRIPTOR_L2_AP01_1)
#define MMU_DESCRIPTOR_L2_AP_P_RO_U_RO (MMU_DESCRIPTOR_L2_AP2_1 | MMU_DESCRIPTOR_L2_AP01_3)
#define MMU_DESCRIPTOR_L2_AP_P_RO_U_NA (MMU_DESCRIPTOR_L2_AP2_1 | MMU_DESCRIPTOR_L2_AP01_1)
#define MMU_DESCRIPTOR_L2_AP_MASK (MMU_DESCRIPTOR_L2_AP2_1 | MMU_DESCRIPTOR_L2_AP01_3)
7.2 映射地址区间标签属性
kernel\base\include\los_vm_map.h
文件中定义地址区间映射标签属性信息。标签属性信息主要分为4类,如图所示。前2位用于标记释放缓存设备,2-5位用于标记权限信息,6-8位用于标记共享私有等信息,9-19位用于标记stack、heap、data、text、bss、vsdo、mmap、shm、fixed、fixed_noreplace等属性信息。20-23位暂未使用,高8位被共享内存SHM使用。
/* the high 8 bits(24~31) should reserved, shm will use it */
#define VM_MAP_REGION_FLAG_CACHED (0<<0)
#define VM_MAP_REGION_FLAG_UNCACHED (1<<0)
#define VM_MAP_REGION_FLAG_UNCACHED_DEVICE (2<<0) /* only exists on some arches, otherwise UNCACHED */
#define VM_MAP_REGION_FLAG_STRONGLY_ORDERED (3<<0) /* only exists on some arches, otherwise UNCACHED */
#define VM_MAP_REGION_FLAG_CACHE_MASK (3<<0)
#define VM_MAP_REGION_FLAG_PERM_USER (1<<2)
#define VM_MAP_REGION_FLAG_PERM_READ (1<<3)
#define VM_MAP_REGION_FLAG_PERM_WRITE (1<<4)
#define VM_MAP_REGION_FLAG_PERM_EXECUTE (1<<5)
#define VM_MAP_REGION_FLAG_PROT_MASK (0xF<<2)
#define VM_MAP_REGION_FLAG_NS (1<<6) /* NON-SECURE */
#define VM_MAP_REGION_FLAG_SHARED (1<<7)
#define VM_MAP_REGION_FLAG_PRIVATE (1<<8)
#define VM_MAP_REGION_FLAG_FLAG_MASK (3<<7)
#define VM_MAP_REGION_FLAG_STACK (1<<9)
#define VM_MAP_REGION_FLAG_HEAP (1<<10)
#define VM_MAP_REGION_FLAG_DATA (1<<11)
#define VM_MAP_REGION_FLAG_TEXT (1<<12)
#define VM_MAP_REGION_FLAG_BSS (1<<13)
#define VM_MAP_REGION_FLAG_VDSO (1<<14)
#define VM_MAP_REGION_FLAG_MMAP (1<<15)
#define VM_MAP_REGION_FLAG_SHM (1<<16)
#define VM_MAP_REGION_FLAG_FIXED (1<<17)
#define VM_MAP_REGION_FLAG_FIXED_NOREPLACE (1<<18)
#define VM_MAP_REGION_FLAG_INVALID (1<<19) /* indicates that flags are not specified */
7.3 标签转换操作
7.3.1 OsCvtProtFlagsToRegionFlags函数
函数OsCvtProtFlagsToRegionFlags()
把保护属性转换为虚拟内存区间标签属性,该函数在系统调用、共享内存等模块会使用。参数unsigned long prot
中的保护标签属性如PROT_READ
、MAP_SHARED
等等,定义在文件third_party/musl/porting/liteos_a/kernel/include/sys/mman.h
。
STATIC INLINE UINT32 OsCvtProtFlagsToRegionFlags(unsigned long prot, unsigned long flags)
{
UINT32 regionFlags = 0;
regionFlags |= VM_MAP_REGION_FLAG_PERM_USER;
regionFlags |= (prot & PROT_READ) ? VM_MAP_REGION_FLAG_PERM_READ : 0;
regionFlags |= (prot & PROT_WRITE) ? (VM_MAP_REGION_FLAG_PERM_READ | VM_MAP_REGION_FLAG_PERM_WRITE) : 0;
regionFlags |= (prot & PROT_EXEC) ? (VM_MAP_REGION_FLAG_PERM_READ | VM_MAP_REGION_FLAG_PERM_EXECUTE) : 0;
regionFlags |= (flags & MAP_SHARED) ? VM_MAP_REGION_FLAG_SHARED : 0;
regionFlags |= (flags & MAP_PRIVATE) ? VM_MAP_REGION_FLAG_PRIVATE : 0;
regionFlags |= (flags & MAP_FIXED) ? VM_MAP_REGION_FLAG_FIXED : 0;
regionFlags |= (flags & MAP_FIXED_NOREPLACE) ? VM_MAP_REGION_FLAG_FIXED_NOREPLACE : 0;
return regionFlags;
}
7.3.2 OsCvtSecFlagsToAttrs函数和OsCvtSecAttsToFlags函数
OsCvtSecFlagsToAttrs
函数用于把内存区域映射标签属性转换为L1 Section类型页表项的MMU标签属性。该函数又分为2个函数,分别是⑴处的OsCvtSecCacheFlagsToMMUFlags()
函数和⑵处的OsCvtSecAccessFlagsToMMUFlags()
函数。OsCvtSecCacheFlagsToMMUFlags()
函数主要判断内存映射区域的低2位缓存标签属性的转换。OsCvtSecAccessFlagsToMMUFlags()
函数用于映射标签属性的2-4位访问权限部分的转换。代码比较简单不再赘述。
⑶处的函数OsCvtSecAttsToFlags()
是上述函数OsCvtSecFlagsToAttrs
的逆过程,用于把L1 Section类型页表项的MMU标签属性转换为内存区域映射标签属性。自行阅读代码,不再逐行分析。
⑴ STATIC UINT32 OsCvtSecCacheFlagsToMMUFlags(UINT32 flags)
{
UINT32 mmuFlags = 0;
switch (flags & VM_MAP_REGION_FLAG_CACHE_MASK) {
case VM_MAP_REGION_FLAG_CACHED:
mmuFlags |= MMU_DESCRIPTOR_L1_TYPE_NORMAL_WRITE_BACK_ALLOCATE;
#ifdef LOSCFG_KERNEL_SMP
mmuFlags |= MMU_DESCRIPTOR_L1_SECTION_SHAREABLE;
#endif
break;
case VM_MAP_REGION_FLAG_STRONGLY_ORDERED:
mmuFlags |= MMU_DESCRIPTOR_L1_TYPE_STRONGLY_ORDERED;
break;
case VM_MAP_REGION_FLAG_UNCACHED:
mmuFlags |= MMU_DESCRIPTOR_L1_TYPE_NORMAL_NOCACHE;
break;
case VM_MAP_REGION_FLAG_UNCACHED_DEVICE:
mmuFlags |= MMU_DESCRIPTOR_L1_TYPE_DEVICE_SHARED;
break;
default:
return LOS_ERRNO_VM_INVALID_ARGS;
}
return mmuFlags;
}
⑵ STATIC UINT32 OsCvtSecAccessFlagsToMMUFlags(UINT32 flags)
{
UINT32 mmuFlags = 0;
switch (flags & (VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_READ | VM_MAP_REGION_FLAG_PERM_WRITE)) {
case 0:
mmuFlags |= MMU_DESCRIPTOR_L1_AP_P_NA_U_NA;
break;
case VM_MAP_REGION_FLAG_PERM_READ:
case VM_MAP_REGION_FLAG_PERM_USER:
mmuFlags |= MMU_DESCRIPTOR_L1_AP_P_RO_U_NA;
break;
case VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_READ:
mmuFlags |= MMU_DESCRIPTOR_L1_AP_P_RO_U_RO;
break;
case VM_MAP_REGION_FLAG_PERM_WRITE:
case VM_MAP_REGION_FLAG_PERM_READ | VM_MAP_REGION_FLAG_PERM_WRITE:
mmuFlags |= MMU_DESCRIPTOR_L1_AP_P_RW_U_NA;
break;
case VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_WRITE:
case VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_READ | VM_MAP_REGION_FLAG_PERM_WRITE:
mmuFlags |= MMU_DESCRIPTOR_L1_AP_P_RW_U_RW;
break;
default:
break;
}
return mmuFlags;
}
/* convert user level mmu flags to L1 descriptors flags */
STATIC UINT32 OsCvtSecFlagsToAttrs(UINT32 flags)
{
UINT32 mmuFlags;
mmuFlags = OsCvtSecCacheFlagsToMMUFlags(flags);
if (mmuFlags == LOS_ERRNO_VM_INVALID_ARGS) {
return mmuFlags;
}
mmuFlags |= MMU_DESCRIPTOR_L1_SMALL_DOMAIN_CLIENT;
mmuFlags |= OsCvtSecAccessFlagsToMMUFlags(flags);
if (!(flags & VM_MAP_REGION_FLAG_PERM_EXECUTE)) {
mmuFlags |= MMU_DESCRIPTOR_L1_SECTION_XN;
}
if (flags & VM_MAP_REGION_FLAG_NS) {
mmuFlags |= MMU_DESCRIPTOR_L1_SECTION_NON_SECURE;
}
if (flags & VM_MAP_REGION_FLAG_PERM_USER) {
mmuFlags |= MMU_DESCRIPTOR_L1_SECTION_NON_GLOBAL;
}
return mmuFlags;
}
⑶ STATIC VOID OsCvtSecAttsToFlags(PTE_T l1Entry, UINT32 *flags)
{
*flags = 0;
if (l1Entry & MMU_DESCRIPTOR_L1_SECTION_NON_SECURE) {
*flags |= VM_MAP_REGION_FLAG_NS;
}
switch (l1Entry & MMU_DESCRIPTOR_L1_TEX_TYPE_MASK) {
case MMU_DESCRIPTOR_L1_TYPE_STRONGLY_ORDERED:
*flags |= VM_MAP_REGION_FLAG_STRONGLY_ORDERED;
break;
case MMU_DESCRIPTOR_L1_TYPE_NORMAL_NOCACHE:
*flags |= VM_MAP_REGION_FLAG_UNCACHED;
break;
case MMU_DESCRIPTOR_L1_TYPE_DEVICE_SHARED:
case MMU_DESCRIPTOR_L1_TYPE_DEVICE_NON_SHARED:
*flags |= VM_MAP_REGION_FLAG_UNCACHED_DEVICE;
break;
default:
break;
}
*flags |= VM_MAP_REGION_FLAG_PERM_READ;
switch (l1Entry & MMU_DESCRIPTOR_L1_AP_MASK) {
case MMU_DESCRIPTOR_L1_AP_P_RO_U_NA:
break;
case MMU_DESCRIPTOR_L1_AP_P_RW_U_NA:
*flags |= VM_MAP_REGION_FLAG_PERM_WRITE;
break;
case MMU_DESCRIPTOR_L1_AP_P_RO_U_RO:
*flags |= VM_MAP_REGION_FLAG_PERM_USER;
break;
case MMU_DESCRIPTOR_L1_AP_P_RW_U_RW:
*flags |= VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_WRITE;
break;
default:
break;
}
if (!(l1Entry & MMU_DESCRIPTOR_L1_SECTION_XN)) {
*flags |= VM_MAP_REGION_FLAG_PERM_EXECUTE;
}
}
7.3.3 OsCvtPte2FlagsToAttrs函数和OsCvtPte2AttsToFlags函数
和上一小节非常类似,上节是L1 Section类型页表项MMU属性和内存区域标签属性的相互转换,本节的2个函数是L2页表项MMU属性和内存区域标签属性的相互转换。函数OsCvtPte2FlagsToAttrs()
把内存区域映射标签属性转换为L2页表项MMU属性,又分为2个函数,分别是⑴处的函数OsCvtPte2CacheFlagsToMMUFlags()
和⑵处的OsCvtPte2AccessFlagsToMMUFlags()
。OsCvtPte2CacheFlagsToMMUFlags()
函数主要判断内存映射区域的低2位缓存标签属性的转换。OsCvtPte2AccessFlagsToMMUFlags()
函数用于映射标签属性的2-4位访问权限部分的转换。代码比较简单不再赘述。
⑶处的函数OsCvtPte2AttsToFlags()
是上述函数OsCvtPte2FlagsToAttrs
的逆过程,用于把L2页表项的MMU标签属性转换为内存区域映射标签属性。自行阅读代码,不再逐行分析。
⑴ STATIC UINT32 OsCvtPte2CacheFlagsToMMUFlags(UINT32 flags)
{
UINT32 mmuFlags = 0;
switch (flags & VM_MAP_REGION_FLAG_CACHE_MASK) {
case VM_MAP_REGION_FLAG_CACHED:
#ifdef LOSCFG_KERNEL_SMP
mmuFlags |= MMU_DESCRIPTOR_L2_SHAREABLE;
#endif
mmuFlags |= MMU_DESCRIPTOR_L2_TYPE_NORMAL_WRITE_BACK_ALLOCATE;
break;
case VM_MAP_REGION_FLAG_STRONGLY_ORDERED:
mmuFlags |= MMU_DESCRIPTOR_L2_TYPE_STRONGLY_ORDERED;
break;
case VM_MAP_REGION_FLAG_UNCACHED:
mmuFlags |= MMU_DESCRIPTOR_L2_TYPE_NORMAL_NOCACHE;
break;
case VM_MAP_REGION_FLAG_UNCACHED_DEVICE:
mmuFlags |= MMU_DESCRIPTOR_L2_TYPE_DEVICE_SHARED;
break;
default:
return LOS_ERRNO_VM_INVALID_ARGS;
}
return mmuFlags;
}
⑵ STATIC UINT32 OsCvtPte2AccessFlagsToMMUFlags(UINT32 flags)
{
UINT32 mmuFlags = 0;
switch (flags & (VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_READ | VM_MAP_REGION_FLAG_PERM_WRITE)) {
case 0:
mmuFlags |= MMU_DESCRIPTOR_L1_AP_P_NA_U_NA;
break;
case VM_MAP_REGION_FLAG_PERM_READ:
case VM_MAP_REGION_FLAG_PERM_USER:
mmuFlags |= MMU_DESCRIPTOR_L2_AP_P_RO_U_NA;
break;
case VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_READ:
mmuFlags |= MMU_DESCRIPTOR_L2_AP_P_RO_U_RO;
break;
case VM_MAP_REGION_FLAG_PERM_WRITE:
case VM_MAP_REGION_FLAG_PERM_READ | VM_MAP_REGION_FLAG_PERM_WRITE:
mmuFlags |= MMU_DESCRIPTOR_L2_AP_P_RW_U_NA;
break;
case VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_WRITE:
case VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_READ | VM_MAP_REGION_FLAG_PERM_WRITE:
mmuFlags |= MMU_DESCRIPTOR_L2_AP_P_RW_U_RW;
break;
default:
break;
}
return mmuFlags;
}
/* convert user level mmu flags to L2 descriptors flags */
STATIC UINT32 OsCvtPte2FlagsToAttrs(UINT32 flags)
{
UINT32 mmuFlags;
mmuFlags = OsCvtPte2CacheFlagsToMMUFlags(flags);
if (mmuFlags == LOS_ERRNO_VM_INVALID_ARGS) {
return mmuFlags;
}
mmuFlags |= OsCvtPte2AccessFlagsToMMUFlags(flags);
if (!(flags & VM_MAP_REGION_FLAG_PERM_EXECUTE)) {
mmuFlags |= MMU_DESCRIPTOR_L2_TYPE_SMALL_PAGE_XN;
} else {
mmuFlags |= MMU_DESCRIPTOR_L2_TYPE_SMALL_PAGE;
}
if (flags & VM_MAP_REGION_FLAG_PERM_USER) {
mmuFlags |= MMU_DESCRIPTOR_L2_NON_GLOBAL;
}
return mmuFlags;
}
⑶ STATIC VOID OsCvtPte2AttsToFlags(PTE_T l1Entry, PTE_T l2Entry, UINT32 *flags)
{
*flags = 0;
/* NS flag is only present on L1 entry */
if (l1Entry & MMU_DESCRIPTOR_L1_PAGETABLE_NON_SECURE) {
*flags |= VM_MAP_REGION_FLAG_NS;
}
switch (l2Entry & MMU_DESCRIPTOR_L2_TEX_TYPE_MASK) {
case MMU_DESCRIPTOR_L2_TYPE_STRONGLY_ORDERED:
*flags |= VM_MAP_REGION_FLAG_STRONGLY_ORDERED;
break;
case MMU_DESCRIPTOR_L2_TYPE_NORMAL_NOCACHE:
*flags |= VM_MAP_REGION_FLAG_UNCACHED;
break;
case MMU_DESCRIPTOR_L2_TYPE_DEVICE_SHARED:
case MMU_DESCRIPTOR_L2_TYPE_DEVICE_NON_SHARED:
*flags |= VM_MAP_REGION_FLAG_UNCACHED_DEVICE;
break;
default:
break;
}
*flags |= VM_MAP_REGION_FLAG_PERM_READ;
switch (l2Entry & MMU_DESCRIPTOR_L2_AP_MASK) {
case MMU_DESCRIPTOR_L2_AP_P_RO_U_NA:
break;
case MMU_DESCRIPTOR_L2_AP_P_RW_U_NA:
*flags |= VM_MAP_REGION_FLAG_PERM_WRITE;
break;
case MMU_DESCRIPTOR_L2_AP_P_RO_U_RO:
*flags |= VM_MAP_REGION_FLAG_PERM_USER;
break;
case MMU_DESCRIPTOR_L2_AP_P_RW_U_RW:
*flags |= VM_MAP_REGION_FLAG_PERM_USER | VM_MAP_REGION_FLAG_PERM_WRITE;
break;
default:
break;
}
if ((l2Entry & MMU_DESCRIPTOR_L2_TYPE_MASK) != MMU_DESCRIPTOR_L2_TYPE_SMALL_PAGE_XN) {
*flags |= VM_MAP_REGION_FLAG_PERM_EXECUTE;
}
}
小结
本文介绍了MMU虚实映射的基本概念,运行机制,分析了映射初始化、映射查询、映射虚拟内存和物理内存,解除虚实映射,更改映射属性,重新映射等常用接口的代码。
经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?
为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。
《鸿蒙 (Harmony OS)开发学习手册》(共计892页):https://gitcode.com/HarmonyOS_MN/733GH/overview
如何快速入门?
1.基本概念
2.构建第一个ArkTS应用
3.……
开发基础知识:
1.应用基础知识
2.配置文件
3.应用数据管理
4.应用安全管理
5.应用隐私保护
6.三方应用调用管控机制
7.资源分类与访问
8.学习ArkTS语言
9.……
基于ArkTS 开发
1.Ability开发
2.UI开发
3.公共事件与通知
4.窗口管理
5.媒体
6.安全
7.网络与链接
8.电话服务
9.数据管理
10.后台任务(Background Task)管理
11.设备管理
12.设备使用信息统计
13.DFX
14.国际化开发
15.折叠屏系列
16.……
鸿蒙开发面试真题(含参考答案):https://gitcode.com/HarmonyOS_MN/733GH/overview
OpenHarmony 开发环境搭建
《OpenHarmony源码解析》:https://gitcode.com/HarmonyOS_MN/733GH/overview
- 搭建开发环境
- Windows 开发环境的搭建
- Ubuntu 开发环境搭建
- Linux 与 Windows 之间的文件共享
- ……
- 系统架构分析
- 构建子系统
- 启动流程
- 子系统
- 分布式任务调度子系统
- 分布式通信子系统
- 驱动子系统
- ……
OpenHarmony 设备开发学习手册:https://gitcode.com/HarmonyOS_MN/733GH/overview