FPGA Prototyping vs Emulation

news2024/12/25 23:56:09

fpga prototyping vs emulation

FPGA Prototyping vs. Emulation

One way to visualize the difference between Prototyping and Emulation is with a “spider chart” (named for its resemblance to a spider’s web).  The Prototyping vs. Emulation spider chart below highlights the differences between these two verification methods, which may be summarized as runtime speed, design capacity, and affordability – all other differences, sometimes not insignificant, are “artifacts” of these three fundamental differences.  Compilation speed is a function of design capacity – the larger the design the longer the compilation time.  Any simulator can be connected in-circuit to a hardware target system with the appropriate speed-buffers but the verification runtime speed is still limited by the simulation platform – Emulation runtime speed is much faster than software simulation, and achievable Prototyping runtime speeds are much higher than Emulation runtime speeds. Likewise, any simulator can be used for software debug for periods of software execution – the higher runtime speeds of Prototyping enable much longer periods of software execution therefor longer software debug sessions.  And debug visibility could include every internal design node in a Prototype or Emulator – but each design node probe is another internal wire connection in FPGA-based Prototyping and Emulation implementations, which impacts design capacity and runtime speed.  Finally, reusability is a function of the customization of the Prototyping or Emulation platform needed to achieve the verification design capacity and runtime speed goals – the more customized the platform is for the specific verification requirements, the less reusable it will be.  The underlying Prototyping or Emulation hardware itself is infinitely reusable, but the design compilations, IP block adaptations, and external connections will have limited reusability.

What Can FPGA Prototyping or Emulation Do Best for You?

To summarize, FPGA Prototyping today is generally more affordable than Emulation, it can achieve much higher runtime speeds, and design capacity has been greatly expanded by today’s leading-edge FPGA technology.  Emulation, on the other hand comes with a higher cost of ownership, provides more simulation-like verification for design debug.  In fact, if you can afford both Prototyping and Emulation, debug with Prototyping is usually limited to identifying and isolating design hardware/software problems over long periods of design operation which are then reproduced in Emulation for detailed debug.  It is recommended that you be clear about your verification goals and priorities, you consider the skill set of your design team with respect to getting the best value from Prototyping and/or Emulation, do a quick ROI calculation on your verification tool investment, budget accordingly – and only then proceed with a choice and deployment of FPGA Prototyping and/or Emulation.

S2C Can Help

S2C is a leading global supplier of FPGA prototyping solutions for today's innovative SoC and ASIC designs, now with the second largest share of the global prototyping market. S2C has been successfully delivering rapid SoC prototyping solutions since 2003. With over 500 customers, including 6 of the world's top 15 semiconductor companies, our world-class engineering team and customer-centric sales team are experts at addressing our customer's SoC and ASIC verification needs. S2C has offices and sales representatives in the US, Europe, mainland China, Hong Kong, Korea, and Japan.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2120173.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

斐纳切数列考试题

计算机二级考试有一道题 result [] a,b0,1 while a<100:print(a,end,) a, b b, ab # 0,1,1,2,3,5,8,13,21,34,55,89,

LLM - 理解 多模态大语言模型 (MLLM) 的发展与相关技术 (二)

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/142063880 免责声明&#xff1a;本文来源于个人知识与公开资料&#xff0c;仅用于学术交流&#xff0c;欢迎讨论&#xff0c;不支持转载。 多模态…

idea 日志打印乱码

在这里插入图片描述 配置中改为一致

算法篇_RGB图像数据压缩与解压(单片机使用)

文章目录 一、前言二、算法选型2.1 Run-Length Encoding (RLE)2.2 Differential Pulse-Code Modulation (DPCM) 三、采用RLE算法实现图像压缩四、哈夫曼编码实现压缩和解压4.1 哈夫曼编码压缩自定义数据与还原4.2 哈夫曼编码压缩完成图像的压缩和还原 书接上回&#xff08;上一…

Java重修笔记 第五十一天 泛型

泛型 1. 对加入集合的数据类型进行约束&#xff0c;提高了安全性 2. 不用做专门的数据类型转换&#xff0c;就可以直接使用从集合取出来的对象&#xff0c;效率高 在类定义中使用泛型 1. 在类名后面跟上 <泛型列表> 表示该类所使用的使用泛型&#xff0c;具体是什么…

nginx 使用篇 配置

一、介绍 1.介绍 Nginx是一个高性能的HTTP和反向代理服务器&#xff0c;同时也是一个邮件代理服务器&#xff0c;它以稳定性、丰富的功能集、简单的配置文件和低系统资源消耗而闻名。 作为一个轻量级的服务器&#xff0c;Nginx在处理高并发连接方面表现出色&#xff0c;能够支…

怎么修复松下相机死机视频只有0字节(0KB)的MDT文件【实测可修复】

死机后视频文件大小仅为0字节 松下S5相机录像死机&#xff0c;关机重新开机后有一个视频文件变成MDT&#xff0c;大小为0KB&#xff0c;录了30多分钟&#xff0c;本应为MOV格式的视频。0字节文件可以修复吗&#xff1f;怎么修复0字节的MDT文件为视频&#xff1f; 数据提取与视…

认知杂谈55

今天分享 有人说的一段争议性的话 I I I I 内容摘要 这篇内容主要有以下要点&#xff1a;首先&#xff0c;人际交往有难度&#xff0c;要让大家都喜欢很难&#xff0c;需学习沟通技巧&#xff0c;可通过看书、关注抖音博主、参加培训班及看罗翔视频片段来提升。其次&#xf…

【C++11 ——— 类的新功能】

C11 ——— 类的新功能 类的新功能默认成员函数类成员变量初始化强制生成默认函数的关键字default禁止生成默认函数的关键字delete 类的新功能 默认成员函数 原来C类中&#xff0c;有6个默认成员函数&#xff1a; 构造函数析构函数拷贝构造函数拷贝赋值重载取地址重载const …

代码随想录刷题day27丨455.分发饼干 ,376. 摆动序列 ,53. 最大子序和

代码随想录刷题day27丨455.分发饼干 ,376. 摆动序列 ,53. 最大子序和 1.贪心算法理论基础 贪心的本质是选择每一阶段的局部最优&#xff0c;从而达到全局最优。 这么说有点抽象&#xff0c;来举一个例子&#xff1a; 例如&#xff0c;有一堆钞票&#xff0c;你可以拿走十张&a…

论文《Graph Neural Networks with convolutional ARMA filters》笔记

【ARMA 2021 PAMI】本文介绍了一种新型的基于**自回归移动平均&#xff08;Auto-Regression Moving Average&#xff0c;ARMA&#xff09;**滤波器的图卷积层。与多项式滤波器相比&#xff0c;ARMA滤波器提供了更灵活的频率响应&#xff0c;对噪声更鲁棒&#xff0c;能更好地捕…

【每日一题】LeetCode 104.二叉树的最大深度(树、深度优先搜索、广度优先搜索、二叉树)

【每日一题】LeetCode 104.二叉树的最大深度&#xff08;树、深度优先搜索、广度优先搜索、二叉树&#xff09; 题目描述 给定一个二叉树 root&#xff0c;我们需要计算并返回该二叉树的最大深度。二叉树的最大深度是指从根节点到最远叶子节点的最长路径上的节点数。 思路分…

Uni-app 开发鸿蒙 App 全攻略

一、开发前的准备工作 开发鸿蒙 App 之前&#xff0c;我们需要做好充分的准备工作。首先是工具的安装与配置。 Node.js 的安装&#xff1a;推荐使用 LTS 版本的 Node.js。可以前往 Node.js 的官方网站下载适合自己操作系统的安装包&#xff0c;如 Windows 用户根据自己的系统版…

OpenHarmony鸿蒙开发( Beta5.0)智能风扇设备开发实践

样例简介 智能风扇设备不仅可以接收数字管家应用下发的指令来控制风扇开启的时间&#xff0c;调节风扇挡位&#xff0c;更改风扇定时时间&#xff0c;而且还可以加入到数字管家的日程管理中。通过日程可以设定风扇相关的任务&#xff0c;使其在特定的时间段内&#xff0c;风扇…

【MySQL】MySQL表的操作

目录 创建表的语法创建表的示例查看表的结构进入数据库查看自己在哪个数据库查看自己所在数据库都有哪些表查看表的详细信息查看创建表时的详细信息 修改表修改表名修改表的内容插入几个数据增加一列修改一列的所有属性删除某一列修改列的名称 删除表 创建表的语法 CREATE TAB…

DFS算法专题(二)——穷举vs暴搜vs深搜vs回溯vs剪枝【OF】决策树

目录 1、决策树 2、算法实战应用【leetcode】 2.1 题一&#xff1a;全排列 2.2.1 算法原理 2.2.2 算法代码 2.2 题二&#xff1a;子集 2.2.1 算法原理【策略一】 2.2.2 算法代码【策略一】 2.2.3 算法原理【策略二&#xff0c;推荐】 2.2.4 算法代码【策略二&#x…

图像去噪技术:传统中值滤波与改进中值滤波算法的比较

在数字图像处理中&#xff0c;去噪是一个至关重要的步骤&#xff0c;尤其是在图像受到椒盐噪声影响时。本文将介绍一种改进的中值滤波算法&#xff0c;并与传统的中值滤波算法进行比较&#xff0c;以展示其在去除椒盐噪声方面的有效性。 实验环境 软件&#xff1a;MATLAB图像…

Centos如何配置阿里云的yum仓库作为yum源?

背景 Centos在国内访问官方yum源慢&#xff0c;可以用国内的yum源&#xff0c;本文以阿里云yum源为例说明。 快速命令 sudo mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak sudo wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.a…

宏观学习笔记:GDP分析(二)

GDP分析&#xff08;一&#xff09;主要是介绍GDP相关的定义以及核算逻辑&#xff0c;本节主要介绍GDP的分析思路。GDP分析主要是2种方法&#xff1a;总量分析和结构分析。 1. 总量分析 1.1 数值选择 一般情况下&#xff0c;分析的对象都是 官方公布的GDP当季值。 1.2 趋势规…

利用发电量和气象数据分析来判断光伏仿真系统的准确性

随着光伏产业的迅速发展&#xff0c;光伏仿真系统通过集成气象数据分析、发电量分析、投融资分析及损耗估算等功能&#xff0c;为光伏项目的全生命周期管理提供了科学依据。 光伏仿真系统集成了气象数据分析、发电量预测、投融资分析、损耗估算及光伏设计等功能。其中&#xf…