C++: set与map容器的介绍与使用

news2024/11/13 17:56:28

本文索引

  • 前言
  • 1. 二叉搜索树
    • 1.1 概念
    • 1.2 二叉搜索树操作
      • 1.2.1 查找与插入
      • 1.2.2 删除
      • 1.2.3 二叉搜索树实现代码
  • 2. 树形结构的关联式容器
    • 2.1 set的介绍与使用
      • 2.1.1 set的构造函数
      • 2.1.2 set的迭代器
      • 2.1.3 set的容量
      • 2.1.4 set的修改操作
    • 2.2 map的介绍与使用
      • 2.2.1 map的构造函数
      • 2.2.2 map的迭代器
      • 2.2.3 map的容量与元素访问
      • 2.2.4 map中元素的修改
    • 2.3 multiset的介绍
    • 2.4 multimap的介绍

前言

二叉树我们在c语言数据结构阶段已经学习过, 这里map和set的特性需要先铺垫二叉搜索树, 而二叉搜索树也是一种树形解构, 二叉搜索树的特性了解, 有助于更好的理解map和set的特性, 本文将借助二叉搜索树, 对二叉树部分进行收尾与总结.

博客主页: 酷酷学!!!

点关注不迷路!


正文开始

1. 二叉搜索树

1.1 概念

在这里插入图片描述
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树

1.2 二叉搜索树操作

首先我们需要先定义节点的结构, 并实现它的构造函数.

	template<class K>
	struct BSTNode
	{
		K _key;
		BSTNode<K>* _left;
		BSTNode<K>* _right;

		BSTNode(const K& key)
			:_key(key)
			, _left(nullptr)
			, _right(nullptr)
		{}
	};

1.2.1 查找与插入

在这里插入图片描述
查找

对于这样一棵二叉搜索树, 我们要对其节点的值进行查找.

  1. 从根开始比较, 如果比跟大则往右边找, 如果比根小则往左边查找.
  2. 最多查找高度次, 走到空时, 还没找到则这个值不存在

编写代码:

bool Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (key < cur->_key)
		{
			cur = cur->_left;
		}
		else if (key > cur->_key)
		{
			cur = cur->_right;
		}
		else
		{
			return true;
		}
	}

	return false;
}

插入

在这里插入图片描述

  1. 如果树为空, 则直接新增节点, 赋值给root指针.
  2. 如果树不为空, 则按照二叉搜索树的性质进行查找插入位置, 如果找到为空节点则插入新节点.

一般情况, 如果有相同的值, 我们是不进行插入的, 也就是二叉搜索树具有去重的性质.

编写代码:

		bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				_root = new Node(key);
				return true;
			}
			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}
			cur = new Node(key);
			if (parent->_key < key)
				parent->_right = cur;
			else
				parent->_left = cur;
			return true;
		}

1.2.2 删除

对于删除操作, 那么我们首先就需要查找此元素在不在二叉搜索树中, 如果不存在则返回, 否则的话我们就进行该节点的删除, 要删除的节点可以分为以下三种情况

  1. 要删除的节点没有孩子, 比如这里的1和7, 我们直接删除即可.

在这里插入图片描述

  1. 要删除的节点有一个孩子, 一个左孩子或者一个右孩子.删除6时只有一个右孩子, 我们可以让父节点直接指向6的右孩子就可以了; 删除14, 我们也可以直接让父节点直接指向14的左孩子就可以了. 但是我们需要记录到父节点, 再判断删除的是父节点的左孩子还是右孩子.

这里其实第一种情况和第二种情况可以归为一种情况, 对于第一种情况, 父节点指向了空.

在这里插入图片描述

  1. 删除的节点有两个孩子. 比如要删除的节点为3和8,这个时候我们需要找一个节点来替代, 那么满足替代的节点要么为左子树最大或者右子树最小, 我们这里选择右子树最小的节点进行替代删除, 先交换值, 然后删除替代删除的节点. 删除8,替代节点为13, 删除3替代节点为4

在这里插入图片描述

如果没有找到替代节点, 也就是左子树的根节点为右子树最小节点, 这种情况我们需要另外分析
在这里插入图片描述

bool Erase(const K& key)
{
	Node* parent = nullptr;
	Node* cur = _root;
	//寻找值为key的节点
	while (cur)
	{
		if (key > cur->_key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (key < cur->_key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			//如果cur没有孩子或者只有一个孩子
			//假设只有一个右孩子,无孩子同样适用
			if (cur->_left == nullptr)
			{
				if (parent == nullptr)
				{
					_root = cur->_right;
				}
				else
				{
					if (parent->_left == cur)
						parent->_left = cur->_right;
					else
						parent->_right = cur->_right;
				}
				delete cur;
				return true;
			}
			//反之假设只有一个左孩子,无孩子同样适用
			else if (cur->_right == nullptr)
			{
				if (parent == nullptr)
				{
					_root = cur->_left;
				}
				else
				{
					if (parent->_left == cur)
						parent->_left = cur->_left;
					else 
						parent->_right = cur->_left;
				}
				delete cur;
				return true;
			}
			//2个孩子的情况
			//这里使用cur的右子树的最小节点作为替代节点
			else
			{
				//这里父节点不能设为nullptr,可能右子树无左孩子
				Node* RMinParent = cur;
				Node* RMin = cur->_right;
				while (RMin->_left)
				{
					RMinParent = RMin;
					RMin = RMin->_left;
				}

				//换值替代
				cur->_key = RMin->_key;
				//重复一个节点或者无节点的方法
				//此时RMin无左孩子
				if (RMinParent->_left == RMin)
					RMinParent->_left = RMin->_right;
				else
					//cur此时为右子树最小节点为cur->right
					RMinParent->_right = RMin->_right;
				delete RMin;
				return true;
			}
		}
	}
	return false;
}

1.2.3 二叉搜索树实现代码

对于只有key的实现

#pragma once

#include<iostream>
using namespace std;

template<class K>
struct BSTNode
{
	K _key;
	BSTNode<K>* _left;
	BSTNode<K>* _right;

	BSTNode(const K& key)
		:_key(key)
		, _left(nullptr)
		, _right(nullptr)
	{}
};

template<class K>
class BSTree
{
	typedef BSTNode<K> Node;
public:
	bool insert(const K& key)
	{
		//情况一:树为空
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}
		//情况二:只能插入到叶子节点
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (key > cur->_key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (key < cur->_key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(key);
		if (key > parent->_key)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		return true;
	}
	bool Find(const K* key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (key > cur->_key)
			{
				cur = cur->_right;
			}
			else if (key < cur->_key)
			{
				cur = cur->_left;
			}
			else
			{
				return true;
			}
		}
		return false;
	}
	bool Erase(const K& key)
	{
		Node* parent = nullptr;
		Node* cur = _root;
		//寻找值为key的节点
		while (cur)
		{
			if (key > cur->_key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (key < cur->_key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				//如果cur没有孩子或者只有一个孩子
				//假设只有一个右孩子,无孩子同样适用
				if (cur->_left == nullptr)
				{
					if (parent == nullptr)
					{
						_root = cur->_right;
					}
					else
					{
						if (parent->_left == cur)
							parent->_left = cur->_right;
						else
							parent->_right = cur->_right;
					}
					delete cur;
					return true;
				}
				//反之假设只有一个左孩子,无孩子同样适用
				else if (cur->_right == nullptr)
				{
					if (parent == nullptr)
					{
						_root = cur->_left;
					}
					else
					{
						if (parent->_left == cur)
							parent->_left = cur->_left;
						else 
							parent->_right = cur->_left;
					}
					delete cur;
					return true;
				}
				//2个孩子的情况
				//这里使用cur的右子树的最小节点作为替代节点
				else
				{
					//这里父节点不能设为nullptr,可能右子树无左孩子
					Node* RMinParent = cur;
					Node* RMin = cur->_right;
					while (RMin->_left)
					{
						RMinParent = RMin;
						RMin = RMin->_left;
					}

					//换值替代
					cur->_key = RMin->_key;
					//重复一个节点或者无节点的方法
					//此时RMin无左孩子
					if (RMinParent->_left == RMin)
						RMinParent->_left = RMin->_right;
					else
						//cur此时为右子树最小节点为cur->right
						RMinParent->_right = RMin->_right;
					delete RMin;
					return true;
				}
			}
		}
		return false;
	}
	//进行一层的封装,_root为私有成员
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}
	Node* _root = nullptr;
};

具有key, value的二叉搜索树实现

namespace KeyValue
{
	template<class K,class V>
	struct BSTNode
	{
		K _key;
		V _value;
		BSTNode<K,V>* _left;
		BSTNode<K,V>* _right;

		BSTNode(const K& key,const V& value)
			:_key(key)
			,_value(value)
			, _left(nullptr)
			, _right(nullptr)
		{}
	};

	template<class K,class V>
	class BSTree
	{
		typedef BSTNode<K,V> Node;
	public:

		BSTree() = default;

		BSTree(const BSTree<K, V>& t)
		{
			_root = Copy(t._root);
		}

		~BSTree()
		{
			Destory(_root);
			_root = nullptr;
		}

		bool Insert(const K& key,const V& value)
		{
			if (_root == nullptr)
			{
				_root = new Node(key,value);
				return true;
			}
			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}
			cur = new Node(key,value);
			if (parent->_key < key)
				parent->_right = cur;
			else
				parent->_left = cur;
			return true;
		}
		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					if (cur->_left == nullptr)
					{
						if (parent == nullptr)
						{
							_root = cur->_right;
						}
						if (parent->_left == cur)
							parent->_left = cur->_right;
						else parent->_right = cur->_right;
						delete cur;
						return true;
					}
					else if (cur->_right == nullptr)
					{
						if (parent == nullptr)
						{
							_root = cur->_left;
						}
						if (parent->left == cur)
							parent->_left = cur->_left;
						else parent->_right = cur->_left;
						delete cur;
						return true;
					}
					else
					{
						//找右子树最左节点替代
						Node* MinLParent = cur;
						Node* Min = cur->_right;
						while (Min->_left)
						{
							MinLParent = Min;
							Min = Min->_left;
						}
						cur->_key = Min->_key;
						if (MinLParent->_left == Min)
							MinLParent->_left = Min->_right;
						else
							MinLParent->_right = Min->_right;
						delete Min;
						return true;
					}
				}
			}
			return false;
		}
		Node* Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (key < cur->_key)
				{
					cur = cur->_left;
				}
				else if (key > cur->_key)
				{
					cur = cur->_right;
				}
				else
				{
					return cur;
				}
			}

			return cur;
		}
		void InOrder()
		{
			_InOrder(_root);
		}

	private:
		void _InOrder(Node* root)
		{
			if (root == nullptr)
				return;
			_InOrder(root->_left);
			cout << root->_key << ":"<<root->_value<<endl;
			_InOrder(root->_right);
		}

		Node* Copy(Node* root)
		{
			if (root == nullptr)
				return nullptr;
			Node* newRoot = new Node(root->_key, root->_value);
			newRoot->_left = Copy(root->_left);
			newRoot->_right = Copy(root->_right);
			return newRoot;
		}

		void Destory(Node* root)
		{
			if (root == nullptr)
				return;
			Destory(root->_left);
			Destory(root->_right);
			delete root;
		}

		Node* _root = nullptr;
	};
}

2. 树形结构的关联式容器

关联式容器

在初阶阶段,我们已经接触过STL中的部分容器,比如:vector、list、deque、forward_list(C++11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身。

关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是<key, value>结构的键值对,在数据检索时比序列式容器效率更高。

键值对

**用来表示具有一一对应关系的一种结构,该结构中一般只包含两个成员变量key和value,key代表键值,value表示与key对应的信息。**比如:现在要建立一个英汉互译的字典,那该字典中必然有英文单词与其对应的中文含义,而且,英文单词与其中文含义是一一对应的关系,即通过该应该单词,在词典中就可以找到与其对应的中文含义。

SGI-STL中关于键值对的定义:

template <class T1, class T2>
struct pair 
{
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair(): first(T1()), second(T2())
{}
 
pair(const T1& a, const T2& b): first(a), second(b)
{}
};



根据应用场景的不桶,STL总共实现了两种不同结构的管理式容器:树型结构与哈希结构。树型结构的关联式容器主要有四种:map、set、multimap、multiset。这四种容器的共同点是:使用平衡搜索树(即红黑树)作为其底层结果,容器中的元素是一个有序的序列。下面一依次介绍每一个容器。

2.1 set的介绍与使用

在这里插入图片描述
T: set中存放元素的类型,实际在底层存储<value, value>的键值对。
Compare:set中元素默认按照小于来比较
Alloc:set中元素空间的管理方式,使用STL提供的空间配置器管理

  1. set是按照一定次序存储元素的容器
  2. 在set中,元素的value也标识它(value就是key,类型为T),并且每个value必须是唯一的。set中的元素不能在容器中修改(元素总是const),但是可以从容器中插入或删除它们。
  3. 在内部,set中的元素总是按照其内部比较对象(类型比较)所指示的特定严格弱排序准则进行排序。
  4. set容器通过key访问单个元素的速度通常比unordered_set容器慢,但它们允许根据顺序对子集进行直接迭代。
  5. set在底层是用二叉搜索树(红黑树)实现的。

注意:

  1. 与map/multimap不同,map/multimap中存储的是真正的键值对<key, value>,set中只放value,但在底层实际存放的是由<value, value>构成的键值对。

  2. set中插入元素时,只需要插入value即可,不需要构造键值对。

  3. set中的元素不可以重复(因此可以使用set进行去重)。

  4. 使用set的迭代器遍历set中的元素,可以得到有序序列

  5. set中的元素默认按照小于来比较

  6. set中查找某个元素,时间复杂度为: l o g 2 n log_2 n log2n

  7. set中的元素不允许修改(为什么?)

  8. set中的底层使用二叉搜索树(红黑树)来实现。

2.1.1 set的构造函数

在这里插入图片描述

在这里插入图片描述

2.1.2 set的迭代器

在这里插入图片描述

2.1.3 set的容量

在这里插入图片描述

2.1.4 set的修改操作

在这里插入图片描述

使用举例:

#include<set>
int main()
{
	//set<int> st;
	//pair<set<int>::iterator, int> p = st.insert(1);
	//cout << p.second << endl;
	set<int> s;
	s.insert(5);
	s.insert(2);
	s.insert(7);
	s.insert(4);
	s.insert(9);
	s.insert(9);
	s.insert(9);
	s.insert(1);
	s.insert(5);
	s.insert(9);

	set<int>::iterator it = s.begin();
	while (it != s.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	s.erase(s.begin());//删除最小值
	int x;
	cin >> x;
	int num = s.erase(x);//返回删除元素个数
	if (num == 0)
	{
		cout << x << "不存在" << endl;
	}

	auto pos = s.find(x);
	if (pos != s.end())
	{
		s.erase(pos);
	}
	else
	{
		cout << x << "不存在" << endl;
	}

	for (auto e : s)
	{
		cout << e << " ";
	}
	cout << endl;

	auto pos1 = find(s.begin(), s.end(), x);  // O(N)
	auto pos2 = s.find(x);                    // O(logN)
	cin >> x;
	if (s.count(x))                           // O(log(N))
	{
		cout << x << "在!" << endl;
	}
	else
	{
		cout << x << "不存在!" << endl;
	}
	return 0;
}

int main()
{
	std::set<int> myset;
	std::set<int>::iterator itlow, itup;

	for (int i = 1; i < 10; i++) myset.insert(i * 10); // 10 20 30 40 50 60 70 80 90
	itlow = myset.lower_bound(30);//返回一个小于或者等于30的值位置
	itup = myset.upper_bound(60);//指向一个大于60的值位置
	//[30,60)
	myset.erase(itlow, itup);
	for (std::set<int>::iterator it = myset.begin(); it != myset.end(); ++it)
		std::cout << ' ' << *it;
	std::cout << '\n';

	return 0;
}

2.2 map的介绍与使用

在这里插入图片描述
key: 键值对中key的类型
T: 键值对中value的类型
Compare: 比较器的类型,map中的元素是按照key来比较的,缺省情况下按照小于来比较,一般情况下(内置类型元素)该参数不需要传递,如果无法比较时(自定义类型),需要用户自己显式传递比较规则(一般情况下按照函数指针或者仿函数来传递)
Alloc:通过空间配置器来申请底层空间,不需要用户传递,除非用户不想使用标准库提供的空间配置器

注意:在使用map时,需要包含头文件。

2.2.1 map的构造函数

在这里插入图片描述

2.2.2 map的迭代器

在这里插入图片描述

2.2.3 map的容量与元素访问

在这里插入图片描述

问题:当key不在map中时,通过operator获取对应value时会发生什么问题?

在这里插入图片描述
在这里插入图片描述

注意:在元素访问时,有一个与operator[]类似的操作at()(该函数不常用)函数,都是通过key找到与key对应的value然后返回其引用,不同的是:当key不存在时,operator[]用默认value与key构造键值对然后插入,返回该默认value,at()函数直接抛异常。

2.2.4 map中元素的修改

在这里插入图片描述

使用举例

#include<map>
int main()
{
	map<string, string> dict;
	pair<string, string> kv1("left", "左边");
	dict.insert(kv1);//方式1
	dict.insert(pair<string, string>("left", "左边"));//方式2匿名函数
	dict.insert(make_pair("insert", "插入"));//方式3
	pair<string, string> kv2 = { "string","字符串" };
	//多参数的隐式类型转换使用{}
	dict.insert({ "string","字符串" });//方式4
	
	//map<string, string> dict = { {"left","左边"},{"right","右边"},{"insert","插入"} };
	//列表构造

	map<string, string>::iterator it = dict.begin();
	while (it != dict.end())
	{
		cout << (*it).first << (*it).second << endl;
		cout << it->first << it->second << endl;
		++it;
	}

	for (const auto& e : dict)
	{
		cout << e.first << ":" << e.second << endl;
	}
	cout << endl;

	return 0;
}

2.3 multiset的介绍

  1. multiset是按照特定顺序存储元素的容器,其中元素是可以重复的。
  2. 在multiset中,元素的value也会识别它(因为multiset中本身存储的就是<value,value>组成的键值对,因此value本身就是key,key就是value,类型为T). multiset元素的值不能在容器中进行修改(因为元素总是const的),但可以从容器中插入或删除。
  3. 在内部,multiset中的元素总是按照其内部比较规则(类型比较)所指示的特定严格弱排序准则进行排序。
  4. multiset容器通过key访问单个元素的速度通常比unordered_multiset容器慢,但当使用迭代器遍历时会得到一个有序序列。
  5. multiset底层结构为二叉搜索树(红黑树)。

注意:
6. multiset中在底层中存储的是<value, value>的键值对
7. multiset的插入接口中只需要插入即可
8. 与set的区别是,multiset中的元素可以重复,set是中value是唯一的
9. 使用迭代器对multiset中的元素进行遍历,可以得到有序的序列
10. multiset中的元素不能修改
11. 在multiset中找某个元素,时间复杂度为 O ( l o g 2 N ) O(log_2 N) O(log2N)
12. multiset的作用:可以对元素进行排序

#include <set>
void TestSet()
{
  int array[] = { 2, 1, 3, 9, 6, 0, 5, 8, 4, 7 };
 
 // 注意:multiset在底层实际存储的是<int, int>的键值对
 multiset<int> s(array, array + sizeof(array)/sizeof(array[0]));
 for (auto& e : s)
 cout << e << " ";
 cout << endl;
 return 0;
}

2.4 multimap的介绍

  1. Multimaps是关联式容器,它按照特定的顺序,存储由key和value映射成的键值对<key, value>,其中多个键值对之间的key是可以重复的。
  2. 在multimap中,通常按照key排序和惟一地标识元素,而映射的value存储与key关联的内容。key和value的类型可能不同,通过multimap内部的成员类value_type组合在一起,value_type是组合key和value的键值对:typedef pair<const Key, T> value_type;
  3. 在内部,multimap中的元素总是通过其内部比较对象,按照指定的特定严格弱排序标准对key进行排序的。
  4. multimap通过key访问单个元素的速度通常比unordered_multimap容器慢,但是使用迭代器直接遍历multimap中的元素可以得到关于key有序的序列。
  5. multimap在底层用二叉搜索树(红黑树)来实现。

注意:multimap和map的唯一不同就是:map中的key是唯一的,而multimap中key是可以重复的。

multimap中的接口可以参考map,功能都是类似的。
注意:

  1. multimap中的key是可以重复的。
  2. multimap中的元素默认将key按照小于来比较
  3. multimap中没有重载operator[]操作(同学们可思考下为什么?)。
  4. 使用时与map包含的头文件相同:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2118952.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于python的mediapipe姿态识别 动作识别 人体关健点 实现跳绳状态判别 计数功能

基于Python的MediaPipe姿态识别实现跳绳状态判别与计数功能 项目概述 本项目旨在利用Google的MediaPipe库&#xff0c;结合姿态识别技术&#xff0c;实现对跳绳动作的实时检测与计数功能。通过识别人体关键点&#xff0c;系统能够准确判断跳绳动作的状态&#xff0c;并实时统…

Java入门:07.Java中的面向对象03

11 this关键字 this关键字有两个作用 第一个作用&#xff0c;用来调用重载的构造方法 public class Test3{public static void main(String[] args){new User();new User("ls");new User("ls","女");} } ​ class User{String name ;String sex…

Autosar工程师必读:ETAS工具链自动化实战指南<三>

----自动化不仅是一种技术&#xff0c;更是一种思维方式&#xff0c;它将帮助我们在快节奏的工作环境中保持领先&#xff01; 目录 往期推荐 自动化命令--generate 命令语法 参数说明 命令使用前提 场景1&#xff1a;BSW代码生成 场景2&#xff1a;RTE代码生成 场景3&a…

对非洲33国免关税!非洲市场不容错过

2024年9月5日中非合作论坛峰会在北京隆重召开&#xff0c;会议后宣布对非洲33个国家实行0关税的优惠政策&#xff0c;并且在未来三年&#xff0c;推动中国企业对非投资不少于700亿元人民币。 自然而然的&#xff0c;中非友好关系必然会带动中国对非洲市场的出口&#xff0c;近…

云计算实训44——K8S及pod相关介绍

一、K8S基本概念 1、k8s是什么 K8S是Kubernetes的 缩写&#xff0c;由于k 和 s 之间有⼋个字符&#xff0c;所以因此得名。 Kubernetes 是⼀个可移植的、可扩展的开源平台&#xff0c;⽤于管理容器化 的⼯作负载和服务&#xff0c;可促进声 明式配置和⾃动化。 2、k8s的功能…

STM32F1+HAL库+FreeTOTS学习10——任务相关API函数使用

STM32F1HAL库FreeTOTS学习10——任务相关API函数使用 任务相关API函数1. uxTaskPriorityGet()2. vTaskPrioritySet()3. uxTaskGetNumberOfTasks()4. uxTaskGetSystemState()5. vTaskGetInfo()6. xTaskGetCurrentHandle()7. xTaskGetHandle()8. xTaskGetIdleTaskHandle()9. uxTa…

你需要掌握的算法:快慢指针

文章目录 前言龟兔赛跑乌龟能否追上兔子乌龟与兔子在何处相遇龟兔问题的推论 快慢指针基础概念发展历史 快慢指针的应用检测链表是否有环找到链表的中间节点计算链表的环长度找到链表环的入口节点 小结 前言 在处理链表数据结构时&#xff0c;快慢指针是一种非常高效的算法技巧…

鸡尾酒排序算法

目录 引言 一、概念 二、算法思想 三、图例解释 1.采用冒泡排序&#xff1a; 2.采用鸡尾酒排序&#xff1a; 3.对比总结 四、算法实现 1.代码实现 2.运行结果 3.代码解释 五、总结 引言 鸡尾酒排序&#xff08;Cocktail Sort&#xff09;&#xff0c;也被称为双向冒…

同一天!蚂蚁集团宣布将发布3款AI新产品!腾讯、零一万物、面壁智能推出最新大模型|AI日报

文章推荐 缓解父母焦虑&#xff01;详细实测&#xff01;这些免费AI可以成为孩子提高学习能力的得力助手&#xff01; 附送试听地址&#xff01;OpenAI ChatGPT被曝将新增8种语音&#xff01;英特尔酷睿Ultra 200V正式发布&#xff5c;AI日报 今日热点 蚂蚁将发布三款AI新产…

Zynq7020 SDK 初学篇(4)- PL 端 GPIO

1.开发背景 基于 PS 端 GPIO 的基础上&#xff0c;如何调用 PL 端 GPIO 的输入输出 2.开发需求 PL 端按键控制 PL 端 LED 3.开发环境 Zynq7020 Vivado2017.4 4.实现步骤 4.1 设计配置 这里设置 PIO 数量 3 个 由于 PL 端不像 PS 端一样绑定 GPIO&#xff0c;所以需要对上面…

内容营销服务,照亮您的独特优势,助力业务增长

内容营销公司通常会承诺过高但交付不足&#xff0c;而在Digital Commerce Partners&#xff0c;我们走的是相反的方向。我们会调低&#xff08;然后超越&#xff09;预期。 由于我们是Copyblogger的SEO和内容营销代理商&#xff0c;我们知道伟大的事情需要时间——这意味着吸引…

【最新华为OD机试E卷-支持在线评测】通过软盘拷贝文件(200分)多语言题解-(Python/C/JavaScript/Java/Cpp)

🍭 大家好这里是春秋招笔试突围 ,一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-E/D卷的三语言AC题解 💻 ACM金牌🏅️团队| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 🍿 最新华为OD机试E卷,全、新、准,题目覆盖率达 95% 以上,支持…

人工智能安全治理框架导图

资源链接&#xff1a;《人工智能安全治理框架》1.0版发布_中央网络安全和信息化委员会办公室

【Python机器学习】循环神经网络(RNN)——循环网络的记忆功能

文档中的词很少是完全独立的&#xff0c;它们的出现会影响文档中的其他词或者收到文档中其他词的影响&#xff1a; The stolen car sped into the arena. The clown car sped into the arena. 这两句话可能会产生两种完全不同的情感感受。这两个句子的形容词、名词、动词、介词…

算法入门-深度优先搜索2

第六部分&#xff1a;深度优先搜索 104.二叉树的最大深度&#xff08;简单&#xff09; 题目&#xff1a;给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;ro…

Tomcat配置及Servlet相关

目录 Eclipse配置Tomcat 1.配置服务器运行环境 2.新建服务器 3.新建动态Web项目 4.创建类继承HttpServlet 5.启动服务器 6.测试访问 请求转发与重定向 请求转发 重定向 Servlet的作用域 Servlet生命周期 这里以Eclipse为例&#xff0c;IDEA配置参考&#xff1a;IDE…

若依框架使用MyBatis-Plus中的baseMapper的方法报错Invalid bound statement (not found):

Invalid bound statement (not found): com.ruoyi.system.mapper.hc.HcOrderMapper.selectList 解决方法 MybatisSqlSessionFactoryBean sessionFactory new MybatisSqlSessionFactoryBean(); 使用 MybatisSqlSessionFactoryBean 而非 SqlSessionFactoryBean 的原因 MyBatis-…

卷轴模式系统源码开发之功能技术分析

随着互联网经济的蓬勃发展&#xff0c;电商平台之间的竞争日益激烈。为了吸引和保留用户&#xff0c;许多电商平台开始探索和采用创新的商业模式。其中&#xff0c;“卷轴模式”作为一种结合了积分奖励和任务兑换机制的新颖模式&#xff0c;逐渐受到了业界的关注。本文将从技术…

智能提醒助理系列-小程序分享到朋友圈

本系列文章记录“智能提醒助理”wx公众号 建设历程&#xff0c;记录实践经验、巩固知识点、锻炼总结能力。 本篇介绍微信小程序如何分享到朋友圈&#xff0c;以及遇到的登录无权限问题和解决方案。 一、需求出发点 智能提醒小程序的推广是一个难点&#xff0c;朋友圈是一个必要…

柯桥外语学习生活日语之与台风有关的日语表达

与台风有关的日语表达&#xff1a; 台風が近づいている (たいふうがちかづいている) - 台风正在靠近 台風が上陸する (たいふうがじょうりくする) - 台风登陆 台風の進路 (たいふうのしんろ) - 台风的路径 強い台風 (つよいたいふう) - 强烈的台风 台風の目 (たいふうのめ…