提示:DDU,供自己复习使用。欢迎大家前来讨论~
文章目录
- 动态规划part06
- 题目
- 题目一:322. 零钱兑换
- 解题思路:
- 题目二:279.完全平方数
- 题目三:139.单词拆分数
- 解题思路:
- 背包问题
- 多重背包(了解)
- 背包问题总结
动态规划part06
背包问题完结
题目
题目一:322. 零钱兑换
322. 零钱兑换
解题思路:
在518.零钱兑换II 中我们已经兑换一次零钱了,这次又要兑换,套路不一样!
题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。
动规五部曲分析如下:
- 确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
- 确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
- dp数组如何初始化
在解决完全背包问题时,初始化 dp[0]
为 0 表示凑成金额 0 不需要硬币,而其他金额 dp[j]
应初始化为最大值,以确保在递推过程中正确更新为最小硬币数量,避免被错误的初始值覆盖。
代码如下:
vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
- 确定遍历顺序
在解决钱币兑换问题时,目标是找出组成特定金额的最小钱币数量,而不是关心钱币的排列顺序。
因此,无论是处理组合还是排列,关键在于如何有效地遍历和更新动态规划数组。
对于本题,选择将钱币(物品)作为外层循环,目标金额(背包容量)作为内层循环。由于每种钱币可以无限使用,这是一个完全背包问题,内层循环按正序进行更新。
总结:我们通过外层循环遍历钱币,内层循环遍历金额,正序更新动态规划数组,以求得组成特定金额的最小钱币数量。这种方法适用于完全背包问题,确保了算法的正确性和效率。
- 举例推导dp数组
以输入:coins = [1, 2, 5], amount = 5为例
dp[amount]为最终结果。
以上分析完毕,C++ 代码如下:
// 版本一
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过
dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
}
}
}
if (dp[amount] == INT_MAX) return -1;
return dp[amount];
}
};
- 时间复杂度: O(n * amount),其中 n 为 coins 的长度
- 空间复杂度: O(amount)
对于遍历方式遍历背包放在外循环,遍历物品放在内循环也是可以的,代码如下:
// 版本二
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
for (int i = 1; i <= amount; i++) { // 遍历背包
for (int j = 0; j < coins.size(); j++) { // 遍历物品
if (i - coins[j] >= 0 && dp[i - coins[j]] != INT_MAX ) {
dp[i] = min(dp[i - coins[j]] + 1, dp[i]);
}
}
}
if (dp[amount] == INT_MAX) return -1;
return dp[amount];
}
};
- 时间复杂度: O(n * amount),其中 n 为 coins 的长度
- 空间复杂度: O(amount)
题目二:279.完全平方数
279. 完全平方数
解题思路:
题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?
感受浓厚的完全背包氛围,而且和322. 零钱兑换是一样的解题思路。
动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[j]:和为j的完全平方数的最少数量为dp[j]
- 确定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);
- dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
有同学问题,那0 * 0 也算是一种啊,为啥dp[0] 就是 0呢?
看题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, …),题目描述中可没说要从0开始,dp[0]=0完全是为了递推公式。
非0下标的dp[j]应该是多少呢?
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。
- 确定遍历顺序
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
所以本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!
外层遍历背包,内层遍历物品的代码:
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
for (int j = 1; j * j <= i; j++) { // 遍历物品
dp[i] = min(dp[i - j * j] + 1, dp[i]);
}
}
- 举例推导dp数组
已输入n为5例,dp状态图如下:
dp[0] = 0 dp[1] = min(dp[0] + 1) = 1 dp[2] = min(dp[1] + 1) = 2 dp[3] = min(dp[2] + 1) = 3 dp[4] = min(dp[3] + 1, dp[0] + 1) = 1 dp[5] = min(dp[4] + 1, dp[1] + 1) = 2
最后的dp[n]为最终结果。
以上动规五部曲分析完毕C++代码如下:
// 版本一
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++) { // 遍历背包
for (int j = 1; j * j <= i; j++) { // 遍历物品
dp[i] = min(dp[i - j * j] + 1, dp[i]);
}
}
return dp[n];
}
};
- 时间复杂度: O(n * √n)
- 空间复杂度: O(n)
先遍历物品,在遍历背包的代码,一样的可以AC的。
// 版本二
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0;
for (int i = 1; i * i <= n; i++) { // 遍历物品
for (int j = i * i; j <= n; j++) { // 遍历背包
dp[j] = min(dp[j - i * i] + 1, dp[j]);
}
}
return dp[n];
}
};
- 时间复杂度: O(n * √n)
- 空间复杂度: O(n)
题目三:139.单词拆分数
139. 单词拆分
解题思路:
回溯算法:分割回文串 :是枚举分割后的所有子串,判断是否回文。
本道是枚举分割所有字符串,判断是否在字典里出现过。
回溯法C++代码:
class Solution {
private:
bool backtracking (const string& s, const unordered_set<string>& wordSet, int startIndex) {
if (startIndex >= s.size()) {
return true;
}
for (int i = startIndex; i < s.size(); i++) {
string word = s.substr(startIndex, i - startIndex + 1);
if (wordSet.find(word) != wordSet.end() && backtracking(s, wordSet, i + 1)) {
return true;
}
}
return false;
}
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
return backtracking(s, wordSet, 0);
}
};
- 时间复杂度:O(2^n),因为每一个单词都有两个状态,切割和不切割
- 空间复杂度:O(n),算法递归系统调用栈的空间
递归的过程中有很多重复计算,可以使用数组保存一下递归过程中计算的结果。
这个叫做记忆化递归,这种方法之前已经提过很多次了。
使用memory数组保存每次计算的以startIndex起始的计算结果,如果memory[startIndex]里已经被赋值了,直接用memory[startIndex]的结果。
C++代码如下:
class Solution {
private:
bool backtracking (const string& s,
const unordered_set<string>& wordSet,
vector<bool>& memory,
int startIndex) {
if (startIndex >= s.size()) {
return true;
}
// 如果memory[startIndex]不是初始值了,直接使用memory[startIndex]的结果
if (!memory[startIndex]) return memory[startIndex];
for (int i = startIndex; i < s.size(); i++) {
string word = s.substr(startIndex, i - startIndex + 1);
if (wordSet.find(word) != wordSet.end() && backtracking(s, wordSet, memory, i + 1)) {
return true;
}
}
memory[startIndex] = false; // 记录以startIndex开始的子串是不可以被拆分的
return false;
}
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
vector<bool> memory(s.size(), 1); // -1 表示初始化状态
return backtracking(s, wordSet, memory, 0);
}
};
这个时间复杂度其实也是:O(2^n)。只不过对于上面那个超时测试用例优化效果特别明显。
背包问题
单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。
拆分时可以重复使用字典中的单词,说明就是一个完全背包!
动规五部曲分析如下:
- 确定dp数组以及下标的含义
dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。
- 确定递推公式
如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。
所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。
- dp数组如何初始化
从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。
那么dp[0]有没有意义呢?
dp[0]表示如果字符串为空的话,说明出现在字典里。
但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。
下标非0的dp[i]初始化为false,只要没有被覆盖说明都是不可拆分为一个或多个在字典中出现的单词。
- 确定遍历顺序
要将一个给定的字符串拆分成字典中存在的单词。这类似于完全背包问题,因为单词可以被重复使用。关键在于确定双层循环的顺序:
- 求组合数:我们先遍历单词(物品),再考虑如何将它们组合进字符串(背包)。
- 求排列数:我们先确定字符串中的位置(背包),再选择适当的单词(物品)来填充这些位置。
对于本题,关注的是单词的排列顺序,因为不同的排列可能意味着不同的结果。例如,使用单词 “apple” 和 “pen” 来组成 “applepenapple”,必须按照 “apple” + “pen” + “apple” 的顺序来排列单词。因此,我们应该先遍历字符串确定当前处理的子串,然后根据这个子串去选择匹配的单词。
这种方法确保我们能够正确处理单词的顺序,从而找到所有可能的排列方式。
本题需要先确定字符串的分割位置(背包),再选择合适的单词来填充这些位置(物品)。
- 举例推导dp[i]
以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:
dp[s.size()]就是最终结果。
动规五部曲分析完毕,C++代码如下:
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
vector<bool> dp(s.size() + 1, false);
dp[0] = true;
for (int i = 1; i <= s.size(); i++) { // 遍历背包
for (int j = 0; j < i; j++) { // 遍历物品
string word = s.substr(j, i - j); //substr(起始位置,截取的个数)
if (wordSet.find(word) != wordSet.end() && dp[j]) {
dp[i] = true;
}
}
}
return dp[s.size()];
}
};
- 时间复杂度:O(n^3),因为substr返回子串的副本是O(n)的复杂度(这里的n是substring的长度)
- 空间复杂度:O(n)
多重背包(了解)
有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。
多重背包和01背包是非常像的, 为什么和01背包像呢?
每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。
例如:
背包最大重量为10。
物品为:
重量 | 价值 | 数量 | |
---|---|---|---|
物品0 | 1 | 15 | 2 |
物品1 | 3 | 20 | 3 |
物品2 | 4 | 30 | 2 |
问背包能背的物品最大价值是多少?
和如下情况有区别么?
重量 | 价值 | 数量 | |
---|---|---|---|
物品0 | 1 | 15 | 1 |
物品0 | 1 | 15 | 1 |
物品1 | 3 | 20 | 1 |
物品1 | 3 | 20 | 1 |
物品1 | 3 | 20 | 1 |
物品2 | 4 | 30 | 1 |
物品2 | 4 | 30 | 1 |
毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。
练习题目:卡码网第56题,多重背包(opens new window)
代码如下:
// 超时了
#include<iostream>
#include<vector>
using namespace std;
int main() {
int bagWeight,n;
cin >> bagWeight >> n;
vector<int> weight(n, 0);
vector<int> value(n, 0);
vector<int> nums(n, 0);
for (int i = 0; i < n; i++) cin >> weight[i];
for (int i = 0; i < n; i++) cin >> value[i];
for (int i = 0; i < n; i++) cin >> nums[i];
for (int i = 0; i < n; i++) {
while (nums[i] > 1) { // 物品数量不是一的,都展开
weight.push_back(weight[i]);
value.push_back(value[i]);
nums[i]--;
}
}
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品,注意此时的物品数量不是n
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
cout << dp[bagWeight] << endl;
}
提交之后,发现这个解法超时了,为什么呢,哪里耗时呢?
耗时就在 这段代码:
for (int i = 0; i < n; i++) {
while (nums[i] > 1) { // 物品数量不是一的,都展开
weight.push_back(weight[i]);
value.push_back(value[i]);
nums[i]--;
}
}
如果物品数量很多的话,C++中,这种操作十分费时,主要消耗在vector的动态底层扩容上。(其实这里也可以优化,先把 所有物品数量都计算好,一起申请vector的空间。
这里也有另一种实现方式,就是把每种商品遍历的个数放在01背包里面在遍历一遍。
代码如下:(详看注释)
#include<iostream>
#include<vector>
using namespace std;
int main() {
int bagWeight,n;
cin >> bagWeight >> n;
vector<int> weight(n, 0);
vector<int> value(n, 0);
vector<int> nums(n, 0);
for (int i = 0; i < n; i++) cin >> weight[i];
for (int i = 0; i < n; i++) cin >> value[i];
for (int i = 0; i < n; i++) cin >> nums[i];
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < n; i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
// 以上为01背包,然后加一个遍历个数
for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
}
}
}
cout << dp[bagWeight] << endl;
}
- 时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量
从代码里可以看出是01背包里面在加一个for循环遍历一个每种商品的数量。 和01背包还是如出一辙的。
当然还有那种二进制优化的方法,其实就是把每种物品的数量,打包成一个个独立的包。
小结:
在准备面试时,重点掌握01背包问题和完全背包问题,对多重背包有一个基本的了解和编码能力。对于更复杂的背包问题变种,如果时间允许,可以作为扩展知识学习,但它们不是面试的关键点。
背包问题总结
关于这几种常见的背包,其关系如下:
通过这个图,可以很清晰分清这几种常见背包之间的关系。
在讲解背包问题的时候,我们都是按照如下五部来逐步分析,相信大家也体会到,把这五部都搞透了,算是对动规来理解深入了。
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
这五部里哪一步都很关键,但确定递推公式和确定遍历顺序都具有规律性和代表性
递归公式:
- 能否装满背包或最多装多少:用
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
更新,如分割等和子集和最后一块石头的重量 II。 - 装满背包的方法数:用
dp[j] += dp[j - nums[i]]
更新,如目标和和零钱兑换 II。 - 装满背包的最大价值:用
dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
更新,如一和零。 - 装满背包所有物品的最小个数:用
dp[j] = min(dp[j - coins[i]] + 1, dp[j])
更新,如零钱兑换和完全平方数。
遍历顺序:
- 01背包:二维
dp
可以任意遍历,一维dp
必须先物品后背包,且从大到小遍历。 - 完全背包:纯问题中,先物品或先背包都可以,从小到大遍历。但若有变化(如求排列数),外层循环应遍历背包,内层遍历物品。