STM32G474之使用DAC1和DAC2测试模拟比较器

news2024/11/16 1:53:00

STM32G474使用DAC1和DAC2的输出作为比较器输入,测试模拟比较器,方法如下:
PA1的附加功能为COMP1_INP,无需映射,直接将它配置为模拟功能,就可以使用了。
将COMP1_OUT引脚映射到PA0;
采用DAC2_OUT1输出电压给COMP1_INP引脚,因此在测试时,需要将PA6和PA1短接。
采用DAC1_OUT1输出在内部连接到“比较器反向输入端”;
当DAC2_OUT1输出电压大于“VCC/2”时,开灯;
当DAC2_OUT1输出电压小于或等于“VCC/2”时,关灯;

1、比较器内部连接

如果我们不看表格,而是将DAC2_CH1连接到比较器1的反向输入端,那就大错特错了。

注意:在使用内部连接时,需要参考表“Table 197. COMPx inverting input assignment”。
随便连接,电路工作不正确
。 

STM32G474有3个DAC通道是带缓冲的外部通道 
PA4的附加功能为DAC1_OUT1,无需映射,直接将它配置为模拟功能,就可以使用了。
PA5的附加功能为DAC1_OUT2,无需映射,直接将它配置为模拟功能,就可以使用了。
PA6的附加功能为DAC2_OUT1,无需映射,直接将它配置为模拟功能,就可以使用了。

2、测试程序

COMP_HandleTypeDef hcomp1;
DAC_HandleTypeDef      DAC_1_Handler;
//DAC1句柄,若直接对寄存器DAC1->DHR12R1和DAC1->DHR12R2操作,就可以将其设置为局部变量

DAC_HandleTypeDef      DAC_2_Handler;
//DAC2句柄,若直接对寄存器DAC2->DHR12R1操作,就可以将其设置为局部变量

void COMP_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStruct = {0};

    __HAL_RCC_SYSCFG_CLK_ENABLE();
    //RCC_APB2ENR寄存器bit0(SYSCFGEN),SYSCFGEN=1,使能SYSCFG + COMP + VREFBUF + OPAMP时钟
    __HAL_RCC_PWR_CLK_ENABLE();
    //RCC_APB1ENR1寄存器bit28(PWREN),PWREN=1,启用电源接口时钟
    __HAL_RCC_GPIOA_CLK_ENABLE();//开启GPIOA时钟

    GPIO_InitStruct.Pin = GPIO_PIN_1;            //选择引脚编号为1
    GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;     //模拟模式
    GPIO_InitStruct.Pull = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; //输出速度设置为5MHz
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器
    //配置“比较器同向输入引脚”

    GPIO_InitStruct.Pin = GPIO_PIN_0;            //选择引脚编号为0
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;      //复用推挽模式
    GPIO_InitStruct.Pull = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; //输出速度设置为5MHz
    GPIO_InitStruct.Alternate = GPIO_AF8_COMP1;  //PA0映射到COMP1_OUT
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器
    //配置“比较器输出引脚”

  hcomp1.Instance = COMP1;
  hcomp1.Init.InputPlus = COMP_INPUT_PLUS_IO1;
    //配置“比较器同向输入信号Vin+”来自PA1引脚
  hcomp1.Init.InputMinus = COMP_INPUT_MINUS_DAC2_CH1;
    //配置“比较器反向输入信号Vin-”来自“DAC2_CH1通道”
  hcomp1.Init.OutputPol = COMP_OUTPUTPOL_NONINVERTED;
    //配置比较器输出极性:当“Vin+ > Vin-”,则输出高电平
  hcomp1.Init.Hysteresis = COMP_HYSTERESIS_NONE;
    //Set comparator hysteresis mode of the input minus
  hcomp1.Init.BlankingSrce = COMP_BLANKINGSRC_NONE;
  hcomp1.Init.TriggerMode = COMP_TRIGGERMODE_NONE;
  HAL_COMP_Init(&hcomp1);

    __HAL_COMP_ENABLE(&hcomp1);
    //使能比较器
    //COMP_CxCSR寄存器bit0(EN),EN=1表示使能比较器

    HAL_COMP_Start(&hcomp1);//启动COMP1,Start COMP1

    DAC1_Init();
    DAC2_Init();
}

void DAC1_Init(void)
{
    DAC_ChannelConfTypeDef DAC1_CH1;        //DAC通道参数相关结构体
    GPIO_InitTypeDef       GPIO_InitStruct; //IO口参数结构体

    __HAL_RCC_DAC1_CLK_ENABLE();  //使能DAC1时钟
    __HAL_RCC_GPIOA_CLK_ENABLE(); //开启GPIOA时钟

    GPIO_InitStruct.Pin   = GPIO_PIN_4;           //选择引脚编号为4
    GPIO_InitStruct.Mode  = GPIO_MODE_ANALOG;     //模拟模式
  GPIO_InitStruct.Pull  = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; //输出速度设置为25MHz至50MHz
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器

    DAC_1_Handler.Instance = DAC1; //DAC1
    HAL_DAC_Init(&DAC_1_Handler);  //初始化DAC

    DAC1_CH1.DAC_HighFrequency     = DAC_HIGH_FREQUENCY_INTERFACE_MODE_ABOVE_160MHZ;
    //DAC时钟选择
  DAC1_CH1.DAC_DMADoubleDataMode = DISABLE; //双重数据模式(高带宽模式)关闭
  DAC1_CH1.DAC_SignedFormat      = DISABLE; //有符号模式关闭
  DAC1_CH1.DAC_SampleAndHold     = DAC_SAMPLEANDHOLD_DISABLE; //关闭采样保持
  DAC1_CH1.DAC_Trigger           = DAC_TRIGGER_NONE;          //不需要外部触发
    DAC1_CH1.DAC_Trigger2          = DAC_TRIGGER_NONE;          //不需要外部触发
  DAC1_CH1.DAC_OutputBuffer      = DAC_OUTPUTBUFFER_ENABLE;   //DAC输出缓冲器打开
    DAC1_CH1.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_ENABLE;//允许内部连接DAC1_CH1
  DAC1_CH1.DAC_UserTrimming      = DAC_TRIMMING_FACTORY;      //工厂矫正模式
  HAL_DAC_ConfigChannel(&DAC_1_Handler, &DAC1_CH1, DAC_CHANNEL_1);   //初始化
  HAL_DACEx_SelfCalibrate(&DAC_1_Handler, &DAC1_CH1, DAC_CHANNEL_1); //矫正
    HAL_DAC_Start(&DAC_1_Handler,DAC_CHANNEL_1); //开启DAC1通道1                  
    
//    HAL_DAC_SetValue(&DAC_1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
    //设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V

    DAC1->DHR12R1=2048;
    //使用寄存器器,直接设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V
}

void DAC2_Init(void)
{
    DAC_ChannelConfTypeDef DAC2_CH1;        //DAC通道参数相关结构体
    GPIO_InitTypeDef       GPIO_InitStruct; //IO口参数结构体

    __HAL_RCC_DAC2_CLK_ENABLE();  //使能DAC2时钟
    __HAL_RCC_GPIOA_CLK_ENABLE(); //开启GPIOA时钟

    GPIO_InitStruct.Pin   = GPIO_PIN_6;           //选择引脚编号为6
    GPIO_InitStruct.Mode  = GPIO_MODE_ANALOG;     //模拟模式
  GPIO_InitStruct.Pull  = GPIO_NOPULL;          //引脚上拉和下拉都没有被激活
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; //输出速度设置为25MHz至50MHz
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    //根据GPIO_InitStruct结构变量指定的参数初始化GPIOA的外设寄存器

    DAC_2_Handler.Instance = DAC2; //DAC2
    HAL_DAC_Init(&DAC_2_Handler);  //初始化DAC

    DAC2_CH1.DAC_HighFrequency     = DAC_HIGH_FREQUENCY_INTERFACE_MODE_ABOVE_160MHZ;
    //DAC时钟选择
  DAC2_CH1.DAC_DMADoubleDataMode = DISABLE; //双重数据模式(高带宽模式)关闭
  DAC2_CH1.DAC_SignedFormat      = DISABLE; //有符号模式关闭
  DAC2_CH1.DAC_SampleAndHold     = DAC_SAMPLEANDHOLD_DISABLE; //关闭采样保持
  DAC2_CH1.DAC_Trigger           = DAC_TRIGGER_NONE;          //不需要外部触发
    DAC2_CH1.DAC_Trigger2          = DAC_TRIGGER_NONE;          //不需要外部触发
  DAC2_CH1.DAC_OutputBuffer      = DAC_OUTPUTBUFFER_ENABLE;   //DAC输出缓冲器打开
    DAC2_CH1.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; //不允许内部连接DAC2_CH1
  DAC2_CH1.DAC_UserTrimming      = DAC_TRIMMING_FACTORY;      //工厂矫正模式  
  HAL_DAC_ConfigChannel(&DAC_2_Handler, &DAC2_CH1, DAC_CHANNEL_1);   //初始化
  HAL_DACEx_SelfCalibrate(&DAC_2_Handler, &DAC2_CH1, DAC_CHANNEL_1); //矫正
    HAL_DAC_Start(&DAC_2_Handler,DAC_CHANNEL_1); //开启DAC2通道1                  
    
    HAL_DAC_SetValue(&DAC_2_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
    //设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V
//    DAC2->DHR12R1=2048;
    //使用寄存器器,直接设置DAC输出电压: 2048*3.3/(0xFFF+1)=1.65V

}

void Test_COMP(void)
{
    uint32_t dac_steps = 0UL;
    uint32_t dac_Value;

  while (1)
    {
        dac_Value=dac_steps*DAC_SAWTOOTH_STEPINC;
        printf("dac_Value=0x%X\r\n",dac_Value);
        HAL_DAC_SetValue(&DAC_2_Handler, DAC_CHANNEL_1,DAC_ALIGN_12B_R,dac_Value );
        HAL_DAC_SetValue(&DAC_1_Handler,DAC_CHANNEL_1,DAC_ALIGN_12B_R,2048);
        dac_steps++;
    if (dac_steps > DAC_SAWTOOTH_STEPS){ dac_steps = 0; }
        HAL_Delay(4);//延时4ms
        if (HAL_COMP_GetOutputLevel(&hcomp1) == COMP_OUTPUT_LEVEL_HIGH)
    {//COMP_CxCSR寄存器bit30(VALUE),VALUE=1表示比较器输出为高电平
      LED1_On();
    }
    else
    {
      LED1_Off();
    }
    }
}
 

comp.h文件如下:

#ifndef __COMP_H__
#define __COMP_H__

#include "stm32g4xx_hal.h"
//使能int8_t,int16_t,int32_t,int64_t
//使能uint8_t,uint16_t,uint32_t,uint64_t

#define DAC_VALUE_MAX         ((uint32_t) 4095)  //DAC的最大电压为4095*3.3/4096=3.299V
#define DAC_SAWTOOTH_STEPS    ((uint32_t) 45)    //DAC的总步数
#define DAC_SAWTOOTH_STEPINC  ( (uint32_t) DAC_VALUE_MAX/DAC_SAWTOOTH_STEPS )
//DAC每走1步的增量值

extern void COMP_Init(void);
extern void Test_COMP(void);
#endif /*__ GPIO_H__ */

3、比较器输出波形

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2117184.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【大疆 SDR 图传 P1 】 功能拆解,通信功能剖析

大疆 SDR 图传 P1 拆解视频P1 SoC1、哲酷2、小米3、大疆(文章主角) 一、为什么说SDR技术1、sdr 软件无线电2、影视博主的测评方法3、第一个说自己SDR的还是这个老登 二、大疆的图传发展历程1、FPGA AD93632、 P1 自研1、2个DSP和一个CPU A72、音频子系统…

SpringMVC;MVC模式;Spring环境搭建;

一,介绍MVC模式: MVC模式: 1.M:model 模型,业务模型和数据模型. 2.C:controller 控制器 3.V:view 视图 优点: 使用控制器C把视图V和业务模型M分离,从而使同一个程序可以使用不同的表现形式 使用场景: 中大型项目 核心: 控制器 二…

828华为云征文 | 基于Docker与Jenkins实现自动化部署

需要了解 本文章主要讲述在 华为云Flexus X 实例上使用docker快速部署持续集成工具 Jenkins,通过插件来自动化CI/CD过程中的各种琐碎功能。选择合适的云服务器: 本文采用的是 华为云服务器 Flexus X 实例(推荐使用)连接方式&#…

【自动驾驶】决策规划算法 | 数学基础(三)直角坐标与自然坐标转换Ⅰ

写在前面: 🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝 个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。 🔍 本文系 清流君 原创之作&…

【有啥问啥】数字孪生(Digital Twin)技术在人工智能中的应用

数字孪生技术在人工智能中的应用 在当今的数字化转型过程中,“数字孪生”技术逐渐成为热门话题,并且在各个行业中展现出巨大的潜力。作为一种新兴技术,数字孪生(Digital Twin)不仅仅是物理对象的虚拟复制品&#xff0…

MATLAB算法实战应用案例精讲-【人工智能】大数据审计(概念篇)

目录 前言 大数据审计发展历程 1.初级阶段:验证型逻辑占据主导地位 2.发展阶段:挖掘型逻辑突出重围 3.成熟阶段:基于验证和挖掘的预测型逻辑发展 算法原理 什么是大数据审计 特征 事项审计 大数据审计的方法 (一)大数据审计的一般思路 (二)大数据审计的关键技术…

【开发工具】探索IntelliJ IDEA插件——JSON Parser,让JSON处理变得轻松高效

开发过程中,遇到一个字符串,需要判断是否是JSON格式,或者是需要将Json字符串美化展示,是否还在打开百度搜JSON在线格式化(https://www.bejson.com/),是否还在写个main方法将字符串转成JSON格式并输出。这篇文章&#x…

【Linux】全面讲解 Shell 变量的那些事

本文内容均来自个人笔记并重新梳理,如有错误欢迎指正! 如果对您有帮助,烦请点赞、关注、转发、订阅专栏! 专栏订阅入口 Linux 专栏 | Docker 专栏 | Kubernetes 专栏 往期精彩文章 【Docker】(全网首发)Kyl…

python中的循环结构

注意:range()函数 累加和: 注意:if 下面如果有好几行,只执行一行 print必须和 for 开头相同格数 例题:水仙花数 注意在print语句中,一句好“ 。。。。。 ”后面必须有逗号然后再写变…

(八) 初入MySQL 【主从复制】

案例概况 在企业应用中,成熟的业务通常数据量都比较大 单台MySQL在安全性、 高可用性和高并发方面都无法满足实际的需求 ,所以需要配置多台主从数据库服务器以实现读写分离来满足需求 一、主从复制原理 1.1、 MySQL的复制类型 基于语句的复制(STATEME…

C++11 的继续学习

1.lambda 我们如果想要给一个自定义的元素排序,那么应该怎么排呢 先举个例子: struct Goods {string _name; // 名字double _price; // 价格int _evaluate; // 评价Goods(const char* str, double price, int evaluate):_name(str), _price(price),…

等额本息等额本金

1、贷款计算器 2024年最新版房贷利率计算器_LPR利率计算器 (K JSON) 贷款计算器 2、等额本息 接下来,我们可以用Python编写一个函数来计算每月还款额: import pandas as pddef amortization_schedule(principal, annual_interest_rate, years):"…

MySQL事务执行过程

一、MySQL一个查询语句执行过程如下图🔽 MySQL客户端查询,经过查询缓存、解析器、查询优化器、查询执行引擎,通过API接口查询,经过存储引擎,获取数据返回给客户端。 二、事务执行过程如下图🔽 1、MySQL客户…

【生日视频制作】F900xr宝马摩托车提车交车仪式AE模板修改文字软件生成器教程特效素材【AE模板】

生日视频制作教程F900xr宝马摩托车提车交车仪式AE模板修改文字特效广告生成神器素材祝福玩法AE模板工程 AE模板套用改图文教程↓↓: 怎么如何做的【生日视频制作】F900xr宝马摩托车提车交车仪式AE模板修改文字软件生成器教程特效素材【AE模板】 生日视频制作步骤&a…

【变化检测】基于IFN建筑物(LEVIR-CD)变化检测实战及ONNX推理

主要内容如下: 1、LEVIR-CD数据集介绍及下载 2、运行环境安装 3、IFN模型训练与预测 4、Onnx运行及可视化 运行环境:Python3.8,torch1.12.0cu113 likyoo变化检测源码:https://github.com/likyoo/open-cd 使用情况:代…

00Mac 安装配置Python3虚拟环境(VirtualEnv、virtualenvwrapper扩展包)

文章目录 前言一、安装二、mac需要配置环境变量三、报错:workon: command not found 前言 本文主要记录,Mac 安装配置Python3虚拟环境(VirtualEnv、virtualenvwrapper扩展包),windows直接执行命令即可,mac…

Arch - 演进中的架构

文章目录 Pre原始分布式时代1. 背景与起源2. 分布式系统的初步探索3. 分布式计算环境(DCE)4. 技术挑战与困境5. 原始分布式时代的失败与教训6. 未来展望 单体时代优势缺陷单体架构与微服务架构的关系总结 SOA时代1. SOA架构及其背景1. 烟囱式架构&#x…

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs&…

C#/.NET/.NET Core优质学习资料

前言 今天大姚给大家分享一些C#/.NET/.NET Core优质学习资料,希望可以帮助到有需要的小伙伴。 什么是 .NET? .NET 是一个免费的、跨平台的、开源开发人员平台,用于构建许多不同类型的应用程序。 使用 .NET,可以使用多种语言、编辑器和库来…

Java中Date类型上的注解

在日常开发中,涉及到日期时间类型Date和常用的注解DateTimeFormat和JsonFormat java.util.Date; org.springframework.format.annotation.DateTimeFormat; com.fasterxml.jackson.annotation.JsonFormat; 一 Date类型字段不使用注解 Data AllArgsConstructor N…