空间计量 | 空间误差模型SEM

news2024/11/17 1:31:26

在空间OLS回归分析中如果得到LM检验并且判断得到应该使用空间误差SEM模型时,接着本文档介绍空间误差SEM模型。首先空间误差SEM模型的数学模式公式如下:

y = βk * x + λ * Wu + µµ为扰动项),Wu为误差(扰动项)空间滞后变量,λ为其回归系数值

空间误差模型时,其将误差项纳入模型中,其实质是将误差项自相关纳入考虑中(空间滞后模型是将因变量空间滞后变量纳入模型)。

空间误差模型SEM案例

  • 1、背景

    当前有一份空间数据,其为美国哥伦布市49个社区的相关数据,包括犯罪率(crime)、房价(hoval)和家庭收入(income),当前希望研究房价和家庭收入对于犯罪率的影响关系,并且在研究这一影响关系时,考虑空间性,并且使用空间误差SEM模型进行分析(具体是否应该使用空间误差模型,通常以空间OLS回归的LM检验进行分析判断决定)。部分数据如下图所示:

    上面展示的是‘分析数据’,共有49个社区,该49个社区对应的‘空间权重矩阵’如下图所示:

    图中数字1表示两个空间点(社区)之间相邻,数字0表示两个社区不相邻。空间权重矩阵数据可点击此处下载。

  • 2、理论

    空间误差模型SEM的自变量包括误差项,其意义为X对于Y无法解决的部分,其具有空间效应关系。其数学模式公式如下:

    y = βk * x + λ * Wu + µµ为扰动项),Wu为误差(扰动项)空间滞后变量,λ为其回归系数值

  • 3、操作

    本例子操作如下:

    下拉选择‘空间权重矩阵’文档即spatialweight这份数据,默认对空间权重矩阵行标准化处理,需要注意的是,空间权重矩阵通常需要进行行标准化处理。

    另需要提示的是,在使用空间计量相关的方法时,其均需要‘空间权重矩阵’和‘分析数据’两份数据,并且均需要单独上传到SPSSAU中,并且对‘分析数据’进行分析时,下拉选择对应的‘空间权重矩阵’,操作上分为以下3个步骤。

    • 第1:上传‘空间权重矩阵’文档

      此处需要注意:上传的数据需要为n*n阶格式,而且第1行为空间点的名称(比如31省市的名称)。类似下图格式:

    • 第2:上传‘分析数据’文档

      此处需要注意:比如31省市数据,‘空间权重矩阵’有着该31个空间点的顺序比如北京-》天津-》河北-》山西-》…,那么‘分析数据’的31行数据也需要按此顺序才可以。

    • 第3:针对‘分析数据’进行分析,并且选择‘空间权重矩阵’文档

      此处需要注意:进行某空间研究方法时需要下拉选择‘空间权重矩阵’,选择后,SPSSAU会自动判断其是否为‘空间权重矩阵’格式,包括是否为n*n阶结构,是否具有对称性等。如果不是则会进行信息提示,请勿必注意空间权重矩阵数据格式。

  • 4、SPSSAU输出结果

    SPSSAU共输出6个表格,分别是模型基本参数等、空间误差SEM模型分析结果、空间误差SEM模型相关检验汇总、信息准则指标结果、空间效应分析和空间误差SEM模型分析结果-简化格式表格,如下所述。

    表格说明
    模型基本参数等输出模型的基础参数值信息等
    空间误差SEM模型分析结果输出模型的分析结果,包括回归系数和显著性检验结果等
    空间误差SEM模型相关检验汇总输出相关的检验比如异方差检验等
    信息准则指标结果如果是极大似然ML法时则会输出信息准则指标等
    空间效应分析输出空间效应分析表格
    空间误差SEM模型分析结果-简化格式输出模型结果的简化表格格式
  • 5、文字分析

    上表格模型的基本参数信息,包括具体的空间计量模型名称,是否使用稳健标准误差,空间权重矩阵名称及是否对其进行标准化处理等,模型估计方法等,表格中仅展示模型的参数信息等无特别分析意义。需要注意的是,当前默认使用ML极大似然法进行估计,但当选中Robust稳健标准误法时,则使用GMM估计,GMM估计法时不会输出llf指标等,即其会影响到后续输出信息准则指标表格。

    上表格展示空间误差SEM模型回归结果,其数学模型为y = β * x + u, u = λ * Wu + μ (其中β表示X的回归系数,Wu表示u的空间滞后变量,λ表示Wu的回归系数,u和μ为误差扰动项),结合当前数据,其公式为:crime = 66.756-0.223*hoval-1.616*income+0.361*残差空间滞后变量。

    具体针对各项的影响关系来看:hoval的回归系数值为-0.223,并且呈现出0.05水平显著性(=0.017<0.05),意味着hoval会对crime产生显著的负向影响关系,即说明房价会负向影响犯罪率,房价越高犯罪率越低。income的回归系数值为-1.616,并且呈现出0.01水平显著性(=0.000<0.01),意味着income会对crime产生显著的负向影响关系,家庭收入越高犯罪率越低。误差项空间滞后变量的回归系数lambda值为0.361,并且呈现出0.05水平显著性(=0.034<0.05),意味着误差项有着空间项,使用空间误差模型较为适合。

    上表格展示异方差White检验和JB检验等,分别用于异方差和正态性检验,空间计量模型时对于空间作用的关注力度明显最高,对于异方差和正态性关注度相对较低,从上表格可以看到,有着一定的异方差问题,因而进一步分析时可考虑选择稳健标准误法,最终使用GMM估计法得到更科学的分析结果。

    上表格展示信息准则结果表格,包括llf值和另外两个值即AIC值和Schwarz准则值,llf值通常越大越好,但是AIC值和Schwarz准则值均是越小越好,如果希望对比模型优劣,可考虑使用上述三个指标,但需要注意的是,极大似然法估计ML法时才会输出上述指标,如果是比如GMM估计则没有输出上述指标。

    上表格展示空间效应分析结果,直接效应ADI反映自变量X对于自身区域Y的平均影响效应情况,间接(溢出)效应AII反应自变量X对其它区域Y的平均影响效应情况,总效应ATI=直接效应ADI+间接(溢出)效应AII。在空间误差SEM时,其仅考虑误差项空间滞后变量放入模型中,单独对于自变量其不会有间接溢出效应,因而AII值全部均为0,总效应ATI值即直接效应ADI值。其空间效应的计算公式如下:

    上表格展示模型的简化表格格式,不再重复分析。

  • 6、剖析
    • 涉及以下几个关键点,分别如下:
    • 通常是使用空间OLS回归分析得到LM检验,并且结合LM检验判断后决定是否使用空间滞后模型。

疑难解惑

  • 空间误差SEM模型时误差项空间滞后变量的意义?
  • 误差项空间滞后变量,是指X对于Y无法解决部分的空间滞后项,即Y无法解决的其它部分,它具有空间效应关系,通常只需要考虑是否需要使用空间误差SEM模型,并且观察误差项空间滞后项是否具有显著性即可,如果呈现出显著性则意味着当前模型应该是适合的,因为考虑该项时该项呈现出显著性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2088136.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

登山第一梯:使用rviz显示bag包中的点云数据

第一步&#xff0c;连接ros master&#xff1a; roscore ​​​​​第二步&#xff0c;打开rviz&#xff08;默认的rviz&#xff09; rosrun rviz rviz ​第三步&#xff0c;查看bag包信息&#xff0c;获取topic信息 rosbag info [bag包路径] 有三个topic&#xff0c;分别时/bp…

SAP B1 三大基本表单标准功能介绍-物料主数据(上)

背景 在 SAP B1 中&#xff0c;科目表、业务伙伴主数据、物料主数据被称为三大基本表单&#xff0c;其中的标准功能是实施项目的基础。本系列文章将逐一介绍三大基本表单各个字段的含义、须填内容、功能等内容。 附上 SAP B1 10.0 的帮助文档&#xff1a;SAP Business One 10…

【测试】bug 相关知识点总结

目录 一、什么是 bug 二、描述 bug 的要素 三、bug 级别 四、bug 的生命周期 一、什么是 bug 在软件开发中&#xff0c;bug 是指软件程序中存在的错误、缺陷或故障。这些问题可能导致软件在运行时出现意外的行为、产生错误的结果、崩溃或无法正常工作。Bug 可以出现在软件…

【机器学习-神经网络】卷积神经网络

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈Python机器学习 ⌋ ⌋ ⌋ 机器学习是一门人工智能的分支学科&#xff0c;通过算法和模型让计算机从数据中学习&#xff0c;进行模型训练和优化&#xff0c;做出预测、分类和决策支持。Python成为机器学习的首选语言&#xff0c;…

6.824 lab2B raft 记录

Raft 2B Task LOG Implement the leader and follower code to append new log entries 您的第一个目标应该是传递 TestBasicAgree3B&#xff08;&#xff09;。 首先实现 Start&#xff08;&#xff09;&#xff0c;然后编写代码 通过 AppendEntries RPC 发送和接收新的日志条…

非整周期截取信号对FFT分析的影响

原文出自微信公众号【小小的电子之路】 自然界中的模拟信号大部分都是无限长的&#xff0c;或者说对计算机而言可以说是无限长的&#xff0c;而计算机只能处理有限长的信号&#xff0c;怎么办呢&#xff1f;以快速傅里叶变换为例&#xff0c;我们通常是截取目标信号中有限长的一…

<Rust>egui学习之小部件(八):如何在窗口中添加滑动条slider部件?

前言 本专栏是关于Rust的GUI库egui的部件讲解及应用实例分析&#xff0c;主要讲解egui的源代码、部件属性、如何应用。 环境配置 系统&#xff1a;windows 平台&#xff1a;visual studio code 语言&#xff1a;rust 库&#xff1a;egui、eframe 概述 本文是本专栏的第八篇博…

虚拟机Linux(Centos7)系统静态IP设置

文章目录 虚拟机Linux系统中通过DHCP获取IP地址的配置和静态IP设置1. 更改网络模式为NAT模式2. 设置虚拟机网络编辑器3. 配置网络文件3.1 修改网络配置文件3.2 添加静态IP、子网掩码和网关3.3 配置DNS 4. 重启网络服务5. 验证IP配置 虚拟机Linux系统中通过DHCP获取IP地址的配置…

LoRAMoE:缓解大模型的世界知识遗忘问题

人工智能咨询培训老师叶梓 转载标明出处 大模型&#xff08;LLMs&#xff09;在进行SFT时&#xff0c;通过增加指令数据量来提升其在多个下游任务中的性能或显著改善特定任务的表现。但研究者们发现&#xff0c;这种大规模的数据增加可能会导致模型遗忘其预训练阶段学习到的世…

加密与安全_前后端通过AES-CBC模式安全传输数据

文章目录 Pre概述前端加密是否有意义&#xff1f;环境准备加密方法、MODE和PADDING的选择前端后端应用&#xff1a;从传输到解密的全过程安全性增强动态生成密钥和初始向量1. 前端&#xff1a;动态生成密钥和IV2. 后端&#xff1a;解密动态密钥和IV 结语 Pre 加密与安全_解密A…

TMGM:欧元区通胀放缓将支持9月欧洲中央银行降息

八月份德国通胀率出乎意料的下降超过预期。欧洲中央银行可能会保持其放松的货币政策。美元/欧元矫正性下跌可能在本周结束前继续。 欧洲统计局将在周五公布八月份欧元区消费者价格(调和)指数(HICP)的预估数值&#xff0c;预期结果将支持9月份决策者降息的决定。 因为对经济增…

大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…

Python 如何进行声音处理(pydub, wave模块)

Python 是一种功能强大的编程语言&#xff0c;它提供了丰富的库和模块用于各种任务的执行&#xff0c;包括声音处理。对于声音处理&#xff0c;pydub 和 wave 模块是最常用的两个库。 一、Python中的声音处理基础知识 在深入探讨具体的模块之前&#xff0c;我们先了解一些声音…

深度学习基础--损失函数

前三章分别介绍了线性回归、浅层神经网络和深度神经网络。这些都属于函数家族&#xff0c;能够实现从输入到输出的映射&#xff0c;其具体的函数取决于模型参数 ϕ \phi ϕ。在训练这些模型时&#xff0c;我们的目标是找到能够为特定任务提供最优输入输出映射的参数。本章将详…

C语言 ——— 文件读取结束的判定

目录 判定文件读取结束的方式 被错误使用的feof函数 判定文件结束的正确使用 判定文件读取结束的方式 判断文本文件是否读取结束&#xff1a; 利用 fgetc 判断返回值是否为 EOF 利用 fgets 判断返回值是否为 NULL 判断二进制文件是否读取结束&#xff1a; 利用 fread 判…

00 Tkinter学习路线

Tkinter学习路线 此Tkinter以更新完毕&#xff0c;几乎涵盖了Tkinter所有知识点 此文章用于快速找到对应的知识点 01 Tkinter介绍 02 Tkinter窗口的管理与设置 03 Tkinter布局方式 04 Tkinter布局组件 05 Tkinter事件 06 Tkinter可变变量 07 Label 组件 08 Button 组件 09 Entr…

大模型技术 | 基于大模型构建本地知识库

前言 随着人工智能技术的发展&#xff0c;大模型已成为智能系统进步的关键力量。 模型以其庞大的数据容量和深度学习能力&#xff0c;为处理复杂任务提供了前所未有的可能性。但在特定应用场景下仍面临挑战&#xff0c;尤其是在需要快速、准确响应的情境中。为了克服这些限制…

.NET Razor类库-热加载 就是运行时编译

1.新建3个项目 1.1 一个.NET Standard2.1项目 IX.Sdk.SvnCICD4NuGet 1.2 一个.NET Razor类库项目 IX.Sdk.SvnCICD4NuGet.RazorWeb 1.3 一个.NET6 Web项目 IX.Sdk.SvnCICD4NuGet.Web 这3个项目的引用关系 Web引用 Razor类库 和 .NET Standard2.1 Razor类库引用.NET Standard2.1…

VBA学习(65):Excel VBA 凭证打印/SQL连接Eexcel文件/Listview控件/CommandButton命令按钮控件

本期内容信息量相当的大&#xff0c;内容涉及很多方面&#xff0c;请耐心阅读&#xff0c;肯定不会让你失望的&#xff01;建议收藏&#xff01; Excel中记账凭证的打印&#xff0c;几种思路 Excel表记账的缺点 最新的打印方法&#xff1a;勾选凭证列表&#xff0c;点打印即可…

OpenCV中使用金字塔LK光流法(下)

接下来通过一个demo来调用calcOpticalFlowPyrLK()实现光流计算,需要注意的是该方法适用于具有丰富特征的像素点的光流计算,平坦区域的像素点往往会得到误差较大的结果。所以我们需要先选取得到一些角点,demo中通过goodFeaturesToTrack()这个接口实现角点提取。 如下有两张图…