简介
本章节主要针对VIVAO 2020.2版本做IP自定义封装,其中涉及到IP寄存器读写配置,自定义接口封装等介绍。
IP封装
IP标准自定义步骤一般有创建工程,封装IP,自定义内容,添加自定义库这4个步骤,下面就每个步骤详细介绍。
创建工程
以寄存器读写IP为例子,自定义封装一个IP模块,首先创建工程,如下图所示:
创建的工程名为cmd_reg。
选择RTL工程。
本次FPGA芯片选用XC7A35TFFG484-2芯片信号。
以上工程创建完毕。
封装IP
工程创建完毕后便可做程序编写了,如果是自定义功能模块可编写代码,然后封装,本工程主要是基于上位机对FPGA寄存器读写的功能模块,所以直接调用reg模块封装,如下图所示:
创建封装后自定义IP有添加AXI4和不添加AXI4总线选择,本次选择添加AXI4总线,如下图所示:
图中1是直接封装自定义IP库,2是添加AXI4总线封装。
图中编号代表意思
1、IP名称;
2、IP版本号;
3、IP展现的名字,这个展现的名字根据1、2生成;
4、IP描述;
5、IP生成所在位置。
上图解析如下:
1、AXI总线命名;
2、AXI总线类型,我们只是寄存器读写,选择lite;
3、AXI总线模式,即主模式和从模式,一般FPGA作为从端,PS或者microblaze作为主,这里选择slave;
4、寄存器数据位宽,32位;
5、寄存器个数,根据需要选择。
填写完毕点击NEXT。
选择编辑库,点击FINISH。
自定义内容
如下图所示:
图中1和2是AXI_LITE的基本代码,3是自定义详细信息。
本设计针对寄存器模块主要添加如下接口:
更改后的代码可以通过读写使能的方式直接操作寄存器的读写,可以理解为将繁琐的AXI总线映射成简单的读写使能方式操作。
更改代码如下:
`timescale 1 ns / 1 ps
module cmd_reg_v1_0_S00_AXI #
(
// Users to add parameters here
// User parameters ends
// Do not modify the parameters beyond this line
// Width of S_AXI data bus
parameter integer C_S_AXI_DATA_WIDTH = 32,
// Width of S_AXI address bus
parameter integer C_S_AXI_ADDR_WIDTH = 8
)
(
// Users to add ports here
output wire[5:0] reg_wr_addr,
output wire slv_reg_wren,
output wire[31:0] reg_wr_data,
output wire[5:0] reg_rd_addr,
output wire reg_rd_en,
input wire[31:0] reg_rd_data,
// User ports ends
// Do not modify the ports beyond this line
// Global Clock Signal
input wire S_AXI_ACLK,
// Global Reset Signal. This Signal is Active LOW
input wire S_AXI_ARESETN,
// Write address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
// Write channel Protection type. This signal indicates the
// privilege and security level of the transaction, and whether
// the transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_AWPROT,
// Write address valid. This signal indicates that the master signaling
// valid write address and control information.
input wire S_AXI_AWVALID,
// Write address ready. This signal indicates that the slave is ready
// to accept an address and associated control signals.
output wire S_AXI_AWREADY,
// Write data (issued by master, acceped by Slave)
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
// Write strobes. This signal indicates which byte lanes hold
// valid data. There is one write strobe bit for each eight
// bits of the write data bus.
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
// Write valid. This signal indicates that valid write
// data and strobes are available.
input wire S_AXI_WVALID,
// Write ready. This signal indicates that the slave
// can accept the write data.
output wire S_AXI_WREADY,
// Write response. This signal indicates the status
// of the write transaction.
output wire [1 : 0] S_AXI_BRESP,
// Write response valid. This signal indicates that the channel
// is signaling a valid write response.
output wire S_AXI_BVALID,
// Response ready. This signal indicates that the master
// can accept a write response.
input wire S_AXI_BREADY,
// Read address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
// Protection type. This signal indicates the privilege
// and security level of the transaction, and whether the
// transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_ARPROT,
// Read address valid. This signal indicates that the channel
// is signaling valid read address and control information.
input wire S_AXI_ARVALID,
// Read address ready. This signal indicates that the slave is
// ready to accept an address and associated control signals.
output wire S_AXI_ARREADY,
// Read data (issued by slave)
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
// Read response. This signal indicates the status of the
// read transfer.
output wire [1 : 0] S_AXI_RRESP,
// Read valid. This signal indicates that the channel is
// signaling the required read data.
output wire S_AXI_RVALID,
// Read ready. This signal indicates that the master can
// accept the read data and response information.
input wire S_AXI_RREADY
);
// AXI4LITE signals
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
reg axi_awready;
reg axi_wready;
reg [1 : 0] axi_bresp;
reg axi_bvalid;
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
reg axi_arready;
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
reg [1 : 0] axi_rresp;
reg axi_rvalid;
// Example-specific design signals
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
// ADDR_LSB is used for addressing 32/64 bit registers/memories
// ADDR_LSB = 2 for 32 bits (n downto 2)
// ADDR_LSB = 3 for 64 bits (n downto 3)
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
localparam integer OPT_MEM_ADDR_BITS = 5;
//----------------------------------------------
//-- Signals for user logic register space example
//------------------------------------------------
//-- Number of Slave Registers 64
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg4;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg5;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg6;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg7;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg8;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg9;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg10;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg11;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg12;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg13;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg14;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg15;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg16;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg17;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg18;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg19;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg20;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg21;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg22;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg23;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg24;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg25;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg26;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg27;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg28;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg29;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg30;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg31;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg32;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg33;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg34;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg35;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg36;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg37;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg38;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg39;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg40;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg41;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg42;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg43;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg44;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg45;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg46;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg47;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg48;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg49;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg50;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg51;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg52;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg53;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg54;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg55;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg56;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg57;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg58;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg59;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg60;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg61;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg62;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg63;
wire slv_reg_rden;
//wire slv_reg_wren;
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
integer byte_index;
reg aw_en;
// I/O Connections assignments
assign S_AXI_AWREADY = axi_awready;
assign S_AXI_WREADY = axi_wready;
assign S_AXI_BRESP = axi_bresp;
assign S_AXI_BVALID = axi_bvalid;
assign S_AXI_ARREADY = axi_arready;
assign S_AXI_RDATA = axi_rdata;
assign S_AXI_RRESP = axi_rresp;
assign S_AXI_RVALID = axi_rvalid;
// Implement axi_awready generation
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awready <= 1'b0;
aw_en <= 1'b1;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
begin
// slave is ready to accept write address when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_awready <= 1'b1;
aw_en <= 1'b0;
end
else if (S_AXI_BREADY && axi_bvalid)
begin
aw_en <= 1'b1;
axi_awready <= 1'b0;
end
else
begin
axi_awready <= 1'b0;
end
end
end
// Implement axi_awaddr latching
// This process is used to latch the address when both
// S_AXI_AWVALID and S_AXI_WVALID are valid.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awaddr <= 0;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
begin
// Write Address latching
axi_awaddr <= S_AXI_AWADDR;
end
end
end
// Implement axi_wready generation
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_wready <= 1'b0;
end
else
begin
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
begin
// slave is ready to accept write data when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_wready <= 1'b1;
end
else
begin
axi_wready <= 1'b0;
end
end
end
// Implement memory mapped register select and write logic generation
// The write data is accepted and written to memory mapped registers when
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
// select byte enables of slave registers while writing.
// These registers are cleared when reset (active low) is applied.
// Slave register write enable is asserted when valid address and data are available
// and the slave is ready to accept the write address and write data.
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
slv_reg0 <= 0;
slv_reg1 <= 0;
slv_reg2 <= 0;
slv_reg3 <= 0;
slv_reg4 <= 0;
slv_reg5 <= 0;
slv_reg6 <= 0;
slv_reg7 <= 0;
slv_reg8 <= 0;
slv_reg9 <= 0;
slv_reg10 <= 0;
slv_reg11 <= 0;
slv_reg12 <= 0;
slv_reg13 <= 0;
slv_reg14 <= 0;
slv_reg15 <= 0;
slv_reg16 <= 0;
slv_reg17 <= 0;
slv_reg18 <= 0;
slv_reg19 <= 0;
slv_reg20 <= 0;
slv_reg21 <= 0;
slv_reg22 <= 0;
slv_reg23 <= 0;
slv_reg24 <= 0;
slv_reg25 <= 0;
slv_reg26 <= 0;
slv_reg27 <= 0;
slv_reg28 <= 0;
slv_reg29 <= 0;
slv_reg30 <= 0;
slv_reg31 <= 0;
slv_reg32 <= 0;
slv_reg33 <= 0;
slv_reg34 <= 0;
slv_reg35 <= 0;
slv_reg36 <= 0;
slv_reg37 <= 0;
slv_reg38 <= 0;
slv_reg39 <= 0;
slv_reg40 <= 0;
slv_reg41 <= 0;
slv_reg42 <= 0;
slv_reg43 <= 0;
slv_reg44 <= 0;
slv_reg45 <= 0;
slv_reg46 <= 0;
slv_reg47 <= 0;
slv_reg48 <= 0;
slv_reg49 <= 0;
slv_reg50 <= 0;
slv_reg51 <= 0;
slv_reg52 <= 0;
slv_reg53 <= 0;
slv_reg54 <= 0;
slv_reg55 <= 0;
slv_reg56 <= 0;
slv_reg57 <= 0;
slv_reg58 <= 0;
slv_reg59 <= 0;
slv_reg60 <= 0;
slv_reg61 <= 0;
slv_reg62 <= 0;
slv_reg63 <= 0;
end
else begin
if (slv_reg_wren)
begin
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
6'h00:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 0
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h01:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 1
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h02:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 2
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h03:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 3
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h04:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 4
slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h05:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 5
slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h06:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 6
slv_reg6[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h07:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 7
slv_reg7[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h08:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 8
slv_reg8[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h09:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 9
slv_reg9[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h0A:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 10
slv_reg10[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h0B:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 11
slv_reg11[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h0C:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 12
slv_reg12[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h0D:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 13
slv_reg13[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h0E:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 14
slv_reg14[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h0F:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 15
slv_reg15[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h10:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 16
slv_reg16[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h11:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 17
slv_reg17[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h12:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 18
slv_reg18[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h13:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 19
slv_reg19[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h14:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 20
slv_reg20[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h15:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 21
slv_reg21[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h16:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 22
slv_reg22[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h17:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 23
slv_reg23[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h18:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 24
slv_reg24[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h19:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 25
slv_reg25[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h1A:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 26
slv_reg26[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h1B:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 27
slv_reg27[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h1C:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 28
slv_reg28[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h1D:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 29
slv_reg29[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h1E:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 30
slv_reg30[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h1F:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 31
slv_reg31[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h20:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 32
slv_reg32[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h21:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 33
slv_reg33[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h22:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 34
slv_reg34[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h23:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 35
slv_reg35[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h24:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 36
slv_reg36[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h25:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 37
slv_reg37[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h26:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 38
slv_reg38[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h27:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 39
slv_reg39[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h28:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 40
slv_reg40[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h29:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 41
slv_reg41[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h2A:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 42
slv_reg42[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h2B:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 43
slv_reg43[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h2C:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 44
slv_reg44[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h2D:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 45
slv_reg45[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h2E:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 46
slv_reg46[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h2F:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 47
slv_reg47[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h30:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 48
slv_reg48[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h31:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 49
slv_reg49[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h32:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 50
slv_reg50[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h33:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 51
slv_reg51[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h34:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 52
slv_reg52[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h35:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 53
slv_reg53[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h36:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 54
slv_reg54[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h37:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 55
slv_reg55[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h38:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 56
slv_reg56[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h39:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 57
slv_reg57[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h3A:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 58
slv_reg58[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h3B:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 59
slv_reg59[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h3C:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 60
slv_reg60[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h3D:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 61
slv_reg61[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h3E:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 62
slv_reg62[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
6'h3F:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 63
slv_reg63[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
default : begin
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
slv_reg3 <= slv_reg3;
slv_reg4 <= slv_reg4;
slv_reg5 <= slv_reg5;
slv_reg6 <= slv_reg6;
slv_reg7 <= slv_reg7;
slv_reg8 <= slv_reg8;
slv_reg9 <= slv_reg9;
slv_reg10 <= slv_reg10;
slv_reg11 <= slv_reg11;
slv_reg12 <= slv_reg12;
slv_reg13 <= slv_reg13;
slv_reg14 <= slv_reg14;
slv_reg15 <= slv_reg15;
slv_reg16 <= slv_reg16;
slv_reg17 <= slv_reg17;
slv_reg18 <= slv_reg18;
slv_reg19 <= slv_reg19;
slv_reg20 <= slv_reg20;
slv_reg21 <= slv_reg21;
slv_reg22 <= slv_reg22;
slv_reg23 <= slv_reg23;
slv_reg24 <= slv_reg24;
slv_reg25 <= slv_reg25;
slv_reg26 <= slv_reg26;
slv_reg27 <= slv_reg27;
slv_reg28 <= slv_reg28;
slv_reg29 <= slv_reg29;
slv_reg30 <= slv_reg30;
slv_reg31 <= slv_reg31;
slv_reg32 <= slv_reg32;
slv_reg33 <= slv_reg33;
slv_reg34 <= slv_reg34;
slv_reg35 <= slv_reg35;
slv_reg36 <= slv_reg36;
slv_reg37 <= slv_reg37;
slv_reg38 <= slv_reg38;
slv_reg39 <= slv_reg39;
slv_reg40 <= slv_reg40;
slv_reg41 <= slv_reg41;
slv_reg42 <= slv_reg42;
slv_reg43 <= slv_reg43;
slv_reg44 <= slv_reg44;
slv_reg45 <= slv_reg45;
slv_reg46 <= slv_reg46;
slv_reg47 <= slv_reg47;
slv_reg48 <= slv_reg48;
slv_reg49 <= slv_reg49;
slv_reg50 <= slv_reg50;
slv_reg51 <= slv_reg51;
slv_reg52 <= slv_reg52;
slv_reg53 <= slv_reg53;
slv_reg54 <= slv_reg54;
slv_reg55 <= slv_reg55;
slv_reg56 <= slv_reg56;
slv_reg57 <= slv_reg57;
slv_reg58 <= slv_reg58;
slv_reg59 <= slv_reg59;
slv_reg60 <= slv_reg60;
slv_reg61 <= slv_reg61;
slv_reg62 <= slv_reg62;
slv_reg63 <= slv_reg63;
end
endcase
end
end
end
// Implement write response logic generation
// The write response and response valid signals are asserted by the slave
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
// This marks the acceptance of address and indicates the status of
// write transaction.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_bvalid <= 0;
axi_bresp <= 2'b0;
end
else
begin
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
begin
// indicates a valid write response is available
axi_bvalid <= 1'b1;
axi_bresp <= 2'b0; // 'OKAY' response
end // work error responses in future
else
begin
if (S_AXI_BREADY && axi_bvalid)
//check if bready is asserted while bvalid is high)
//(there is a possibility that bready is always asserted high)
begin
axi_bvalid <= 1'b0;
end
end
end
end
// Implement axi_arready generation
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
// S_AXI_ARVALID is asserted. axi_awready is
// de-asserted when reset (active low) is asserted.
// The read address is also latched when S_AXI_ARVALID is
// asserted. axi_araddr is reset to zero on reset assertion.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_arready <= 1'b0;
axi_araddr <= 32'b0;
end
else
begin
if (~axi_arready && S_AXI_ARVALID)
begin
// indicates that the slave has acceped the valid read address
axi_arready <= 1'b1;
// Read address latching
axi_araddr <= S_AXI_ARADDR;
end
else
begin
axi_arready <= 1'b0;
end
end
end
// Implement axi_arvalid generation
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
// data are available on the axi_rdata bus at this instance. The
// assertion of axi_rvalid marks the validity of read data on the
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
// is deasserted on reset (active low). axi_rresp and axi_rdata are
// cleared to zero on reset (active low).
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rvalid <= 0;
axi_rresp <= 0;
end
else
begin
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
begin
// Valid read data is available at the read data bus
axi_rvalid <= 1'b1;
axi_rresp <= 2'b0; // 'OKAY' response
end
else if (axi_rvalid && S_AXI_RREADY)
begin
// Read data is accepted by the master
axi_rvalid <= 1'b0;
end
end
end
// Implement memory mapped register select and read logic generation
// Slave register read enable is asserted when valid address is available
// and the slave is ready to accept the read address.
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
always @(*)
begin
// Address decoding for reading registers
reg_data_out <= reg_rd_data;
// case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
// 6'h00 : reg_data_out <= 32'h55aa_0001;
// 6'h01 : reg_data_out <= slv_reg1;
// 6'h02 : reg_data_out <= slv_reg2;
// 6'h03 : reg_data_out <= slv_reg3;
// 6'h04 : reg_data_out <= slv_reg4;
// 6'h05 : reg_data_out <= slv_reg5;
// 6'h06 : reg_data_out <= slv_reg6;
// 6'h07 : reg_data_out <= slv_reg7;
// 6'h08 : reg_data_out <= slv_reg8;
// 6'h09 : reg_data_out <= slv_reg9;
// 6'h0A : reg_data_out <= slv_reg10;
// 6'h0B : reg_data_out <= slv_reg11;
// 6'h0C : reg_data_out <= slv_reg12;
// 6'h0D : reg_data_out <= slv_reg13;
// 6'h0E : reg_data_out <= slv_reg14;
// 6'h0F : reg_data_out <= slv_reg15;
// 6'h10 : reg_data_out <= slv_reg16;
// 6'h11 : reg_data_out <= slv_reg17;
// 6'h12 : reg_data_out <= slv_reg18;
// 6'h13 : reg_data_out <= slv_reg19;
// 6'h14 : reg_data_out <= slv_reg20;
// 6'h15 : reg_data_out <= slv_reg21;
// 6'h16 : reg_data_out <= slv_reg22;
// 6'h17 : reg_data_out <= slv_reg23;
// 6'h18 : reg_data_out <= slv_reg24;
// 6'h19 : reg_data_out <= slv_reg25;
// 6'h1A : reg_data_out <= slv_reg26;
// 6'h1B : reg_data_out <= slv_reg27;
// 6'h1C : reg_data_out <= slv_reg28;
// 6'h1D : reg_data_out <= slv_reg29;
// 6'h1E : reg_data_out <= slv_reg30;
// 6'h1F : reg_data_out <= reg_rd_data;
//
// 6'h20 : reg_data_out <= slv_reg32;
// 6'h21 : reg_data_out <= slv_reg33;
// 6'h22 : reg_data_out <= slv_reg34;
// 6'h23 : reg_data_out <= slv_reg35;
// 6'h24 : reg_data_out <= slv_reg36;
// 6'h25 : reg_data_out <= slv_reg37;
// 6'h26 : reg_data_out <= slv_reg38;
// 6'h27 : reg_data_out <= slv_reg39;
// 6'h28 : reg_data_out <= slv_reg40;
// 6'h29 : reg_data_out <= slv_reg41;
// 6'h2A : reg_data_out <= slv_reg42;
// 6'h2B : reg_data_out <= slv_reg43;
// 6'h2C : reg_data_out <= slv_reg44;
// 6'h2D : reg_data_out <= slv_reg45;
// 6'h2E : reg_data_out <= slv_reg46;
// 6'h2F : reg_data_out <= slv_reg47;
// 6'h30 : reg_data_out <= slv_reg48;
// 6'h31 : reg_data_out <= slv_reg49;
// 6'h32 : reg_data_out <= slv_reg50;
// 6'h33 : reg_data_out <= slv_reg51;
// 6'h34 : reg_data_out <= slv_reg52;
// 6'h35 : reg_data_out <= slv_reg53;
// 6'h36 : reg_data_out <= slv_reg54;
// 6'h37 : reg_data_out <= slv_reg55;
// 6'h38 : reg_data_out <= slv_reg56;
// 6'h39 : reg_data_out <= slv_reg57;
// 6'h3A : reg_data_out <= slv_reg58;
// 6'h3B : reg_data_out <= slv_reg59;
// 6'h3C : reg_data_out <= slv_reg60;
// 6'h3D : reg_data_out <= slv_reg61;
// 6'h3E : reg_data_out <= slv_reg62;
// 6'h3F : reg_data_out <= slv_reg63;
// default : reg_data_out <= 0;
// endcase
end
// Output register or memory read data
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rdata <= 0;
end
else
begin
// When there is a valid read address (S_AXI_ARVALID) with
// acceptance of read address by the slave (axi_arready),
// output the read dada
if (slv_reg_rden)
begin
axi_rdata <= reg_data_out; // register read data
end
end
end
// Add user logic here
assign reg_wr_addr = axi_awaddr[7:2];
assign reg_rd_addr = S_AXI_ARADDR[7:2];
//assign reg_rd_addr = axi_araddr[7:2];
assign reg_wr_en = slv_reg_wren;
assign reg_wr_data = S_AXI_WDATA;
assign reg_rd_en = slv_reg_rden;
// User logic ends
endmodule
更改后IP配置有所变化,如下图所示:
1、IP基本信息;
2、IP可以使用的FPGA FAMILY范围,由于工程选择的是A7,这里默认只能A7工程调用此模块,如需其他类型FPGA使用,可以在这里添加FAMILY;
3、文件分类,可以默认不管;
4、接口定义,这里显示所有对外接口。
红色框图表示自定义的接口,也可以将自定义接口设置成总线形式,如下图所示:
选中需要组合的接口,右键选择Add Bus interface;
1、点击设置,这里选择BRAM模式总线;
2、总线名称。
然后映射读写总线信息,先映射写,如下图所示:
总线需要添加时钟,不然会有WARNING,添加方式如下图所示:
添加完毕后生成IP,如下图所示:
添加自定义库
生成的IP需要添加到工程库里,添加方式如下图所示:
找到IP地址目录,添加如下:
添加完成后即可在IP里找到自定义的IP,如下图所示:
IP的添加方式到这里结束,有问题欢迎提问。