VIVADO自定义 IP封装

news2024/11/15 19:36:11

简介        

        本章节主要针对VIVAO 2020.2版本做IP自定义封装,其中涉及到IP寄存器读写配置,自定义接口封装等介绍。

IP封装

        IP标准自定义步骤一般有创建工程,封装IP,自定义内容,添加自定义库这4个步骤,下面就每个步骤详细介绍。

创建工程

以寄存器读写IP为例子,自定义封装一个IP模块,首先创建工程,如下图所示:

        创建的工程名为cmd_reg。

        

        选择RTL工程。

        本次FPGA芯片选用XC7A35TFFG484-2芯片信号。

        以上工程创建完毕。

封装IP

        工程创建完毕后便可做程序编写了,如果是自定义功能模块可编写代码,然后封装,本工程主要是基于上位机对FPGA寄存器读写的功能模块,所以直接调用reg模块封装,如下图所示:

创建封装后自定义IP有添加AXI4和不添加AXI4总线选择,本次选择添加AXI4总线,如下图所示:

图中1是直接封装自定义IP库,2是添加AXI4总线封装。

图中编号代表意思

1、IP名称;

2、IP版本号;

3、IP展现的名字,这个展现的名字根据1、2生成;

4、IP描述;

5、IP生成所在位置。

上图解析如下:

1、AXI总线命名;

2、AXI总线类型,我们只是寄存器读写,选择lite;

3、AXI总线模式,即主模式和从模式,一般FPGA作为从端,PS或者microblaze作为主,这里选择slave;

4、寄存器数据位宽,32位;

5、寄存器个数,根据需要选择。

填写完毕点击NEXT。

        选择编辑库,点击FINISH。

        自定义内容

        如下图所示:

图中1和2是AXI_LITE的基本代码,3是自定义详细信息。

本设计针对寄存器模块主要添加如下接口:

        更改后的代码可以通过读写使能的方式直接操作寄存器的读写,可以理解为将繁琐的AXI总线映射成简单的读写使能方式操作。

更改代码如下:


`timescale 1 ns / 1 ps

	module cmd_reg_v1_0_S00_AXI #
	(
		// Users to add parameters here

		// User parameters ends
		// Do not modify the parameters beyond this line

		// Width of S_AXI data bus
		parameter integer C_S_AXI_DATA_WIDTH	= 32,
		// Width of S_AXI address bus
		parameter integer C_S_AXI_ADDR_WIDTH	= 8
	)
	(
		// Users to add ports here
		output wire[5:0]  reg_wr_addr,
		output wire slv_reg_wren,
		output wire[31:0] reg_wr_data,
		output wire[5:0]  reg_rd_addr,
		output wire reg_rd_en,
		input wire[31:0] reg_rd_data,
		// User ports ends
		// Do not modify the ports beyond this line

		// Global Clock Signal
		input wire  S_AXI_ACLK,
		// Global Reset Signal. This Signal is Active LOW
		input wire  S_AXI_ARESETN,
		// Write address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
		// Write channel Protection type. This signal indicates the
    		// privilege and security level of the transaction, and whether
    		// the transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_AWPROT,
		// Write address valid. This signal indicates that the master signaling
    		// valid write address and control information.
		input wire  S_AXI_AWVALID,
		// Write address ready. This signal indicates that the slave is ready
    		// to accept an address and associated control signals.
		output wire  S_AXI_AWREADY,
		// Write data (issued by master, acceped by Slave) 
		input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
		// Write strobes. This signal indicates which byte lanes hold
    		// valid data. There is one write strobe bit for each eight
    		// bits of the write data bus.    
		input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
		// Write valid. This signal indicates that valid write
    		// data and strobes are available.
		input wire  S_AXI_WVALID,
		// Write ready. This signal indicates that the slave
    		// can accept the write data.
		output wire  S_AXI_WREADY,
		// Write response. This signal indicates the status
    		// of the write transaction.
		output wire [1 : 0] S_AXI_BRESP,
		// Write response valid. This signal indicates that the channel
    		// is signaling a valid write response.
		output wire  S_AXI_BVALID,
		// Response ready. This signal indicates that the master
    		// can accept a write response.
		input wire  S_AXI_BREADY,
		// Read address (issued by master, acceped by Slave)
		input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
		// Protection type. This signal indicates the privilege
    		// and security level of the transaction, and whether the
    		// transaction is a data access or an instruction access.
		input wire [2 : 0] S_AXI_ARPROT,
		// Read address valid. This signal indicates that the channel
    		// is signaling valid read address and control information.
		input wire  S_AXI_ARVALID,
		// Read address ready. This signal indicates that the slave is
    		// ready to accept an address and associated control signals.
		output wire  S_AXI_ARREADY,
		// Read data (issued by slave)
		output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
		// Read response. This signal indicates the status of the
    		// read transfer.
		output wire [1 : 0] S_AXI_RRESP,
		// Read valid. This signal indicates that the channel is
    		// signaling the required read data.
		output wire  S_AXI_RVALID,
		// Read ready. This signal indicates that the master can
    		// accept the read data and response information.
		input wire  S_AXI_RREADY
	);

	// AXI4LITE signals
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_awaddr;
	reg  	axi_awready;
	reg  	axi_wready;
	reg [1 : 0] 	axi_bresp;
	reg  	axi_bvalid;
	reg [C_S_AXI_ADDR_WIDTH-1 : 0] 	axi_araddr;
	reg  	axi_arready;
	reg [C_S_AXI_DATA_WIDTH-1 : 0] 	axi_rdata;
	reg [1 : 0] 	axi_rresp;
	reg  	axi_rvalid;

	// Example-specific design signals
	// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
	// ADDR_LSB is used for addressing 32/64 bit registers/memories
	// ADDR_LSB = 2 for 32 bits (n downto 2)
	// ADDR_LSB = 3 for 64 bits (n downto 3)
	localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
	localparam integer OPT_MEM_ADDR_BITS = 5;
	//----------------------------------------------
	//-- Signals for user logic register space example
	//------------------------------------------------
	//-- Number of Slave Registers 64
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg0;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg1;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg2;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg3;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg4;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg5;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg6;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg7;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg8;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg9;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg10;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg11;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg12;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg13;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg14;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg15;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg16;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg17;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg18;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg19;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg20;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg21;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg22;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg23;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg24;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg25;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg26;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg27;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg28;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg29;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg30;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg31;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg32;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg33;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg34;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg35;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg36;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg37;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg38;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg39;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg40;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg41;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg42;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg43;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg44;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg45;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg46;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg47;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg48;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg49;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg50;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg51;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg52;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg53;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg54;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg55;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg56;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg57;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg58;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg59;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg60;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg61;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg62;
	reg [C_S_AXI_DATA_WIDTH-1:0]	slv_reg63;
	wire	 slv_reg_rden;
	//wire	 slv_reg_wren;
	reg [C_S_AXI_DATA_WIDTH-1:0]	 reg_data_out;
	integer	 byte_index;
	reg	 aw_en;

	// I/O Connections assignments

	assign S_AXI_AWREADY	= axi_awready;
	assign S_AXI_WREADY	= axi_wready;
	assign S_AXI_BRESP	= axi_bresp;
	assign S_AXI_BVALID	= axi_bvalid;
	assign S_AXI_ARREADY	= axi_arready;
	assign S_AXI_RDATA	= axi_rdata;
	assign S_AXI_RRESP	= axi_rresp;
	assign S_AXI_RVALID	= axi_rvalid;
	// Implement axi_awready generation
	// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
	// de-asserted when reset is low.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awready <= 1'b0;
	      aw_en <= 1'b1;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
	        begin
	          // slave is ready to accept write address when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_awready <= 1'b1;
	          aw_en <= 1'b0;
	        end
	        else if (S_AXI_BREADY && axi_bvalid)
	            begin
	              aw_en <= 1'b1;
	              axi_awready <= 1'b0;
	            end
	      else           
	        begin
	          axi_awready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_awaddr latching
	// This process is used to latch the address when both 
	// S_AXI_AWVALID and S_AXI_WVALID are valid. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_awaddr <= 0;
	    end 
	  else
	    begin    
	      if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
	        begin
	          // Write Address latching 
	          axi_awaddr <= S_AXI_AWADDR;
	        end
	    end 
	end       

	// Implement axi_wready generation
	// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
	// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is 
	// de-asserted when reset is low. 

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_wready <= 1'b0;
	    end 
	  else
	    begin    
	      if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
	        begin
	          // slave is ready to accept write data when 
	          // there is a valid write address and write data
	          // on the write address and data bus. This design 
	          // expects no outstanding transactions. 
	          axi_wready <= 1'b1;
	        end
	      else
	        begin
	          axi_wready <= 1'b0;
	        end
	    end 
	end       

	// Implement memory mapped register select and write logic generation
	// The write data is accepted and written to memory mapped registers when
	// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
	// select byte enables of slave registers while writing.
	// These registers are cleared when reset (active low) is applied.
	// Slave register write enable is asserted when valid address and data are available
	// and the slave is ready to accept the write address and write data.
	assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      slv_reg0 <= 0;
	      slv_reg1 <= 0;
	      slv_reg2 <= 0;
	      slv_reg3 <= 0;
	      slv_reg4 <= 0;
	      slv_reg5 <= 0;
	      slv_reg6 <= 0;
	      slv_reg7 <= 0;
	      slv_reg8 <= 0;
	      slv_reg9 <= 0;
	      slv_reg10 <= 0;
	      slv_reg11 <= 0;
	      slv_reg12 <= 0;
	      slv_reg13 <= 0;
	      slv_reg14 <= 0;
	      slv_reg15 <= 0;
	      slv_reg16 <= 0;
	      slv_reg17 <= 0;
	      slv_reg18 <= 0;
	      slv_reg19 <= 0;
	      slv_reg20 <= 0;
	      slv_reg21 <= 0;
	      slv_reg22 <= 0;
	      slv_reg23 <= 0;
	      slv_reg24 <= 0;
	      slv_reg25 <= 0;
	      slv_reg26 <= 0;
	      slv_reg27 <= 0;
	      slv_reg28 <= 0;
	      slv_reg29 <= 0;
	      slv_reg30 <= 0;
	      slv_reg31 <= 0;
	      slv_reg32 <= 0;
	      slv_reg33 <= 0;
	      slv_reg34 <= 0;
	      slv_reg35 <= 0;
	      slv_reg36 <= 0;
	      slv_reg37 <= 0;
	      slv_reg38 <= 0;
	      slv_reg39 <= 0;
	      slv_reg40 <= 0;
	      slv_reg41 <= 0;
	      slv_reg42 <= 0;
	      slv_reg43 <= 0;
	      slv_reg44 <= 0;
	      slv_reg45 <= 0;
	      slv_reg46 <= 0;
	      slv_reg47 <= 0;
	      slv_reg48 <= 0;
	      slv_reg49 <= 0;
	      slv_reg50 <= 0;
	      slv_reg51 <= 0;
	      slv_reg52 <= 0;
	      slv_reg53 <= 0;
	      slv_reg54 <= 0;
	      slv_reg55 <= 0;
	      slv_reg56 <= 0;
	      slv_reg57 <= 0;
	      slv_reg58 <= 0;
	      slv_reg59 <= 0;
	      slv_reg60 <= 0;
	      slv_reg61 <= 0;
	      slv_reg62 <= 0;
	      slv_reg63 <= 0;
	    end 
	  else begin
	    if (slv_reg_wren)
	      begin
	        case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
	          6'h00:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 0
	                slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h01:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 1
	                slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h02:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 2
	                slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h03:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 3
	                slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h04:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 4
	                slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h05:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 5
	                slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h06:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 6
	                slv_reg6[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h07:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 7
	                slv_reg7[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h08:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 8
	                slv_reg8[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h09:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 9
	                slv_reg9[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0A:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 10
	                slv_reg10[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0B:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 11
	                slv_reg11[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0C:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 12
	                slv_reg12[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0D:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 13
	                slv_reg13[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0E:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 14
	                slv_reg14[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h0F:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 15
	                slv_reg15[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h10:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 16
	                slv_reg16[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h11:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 17
	                slv_reg17[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h12:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 18
	                slv_reg18[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h13:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 19
	                slv_reg19[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h14:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 20
	                slv_reg20[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h15:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 21
	                slv_reg21[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h16:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 22
	                slv_reg22[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h17:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 23
	                slv_reg23[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h18:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 24
	                slv_reg24[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h19:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 25
	                slv_reg25[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1A:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 26
	                slv_reg26[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1B:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 27
	                slv_reg27[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1C:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 28
	                slv_reg28[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1D:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 29
	                slv_reg29[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1E:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 30
	                slv_reg30[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h1F:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 31
	                slv_reg31[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h20:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 32
	                slv_reg32[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h21:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 33
	                slv_reg33[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h22:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 34
	                slv_reg34[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h23:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 35
	                slv_reg35[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h24:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 36
	                slv_reg36[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h25:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 37
	                slv_reg37[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h26:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 38
	                slv_reg38[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h27:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 39
	                slv_reg39[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h28:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 40
	                slv_reg40[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h29:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 41
	                slv_reg41[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2A:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 42
	                slv_reg42[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2B:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 43
	                slv_reg43[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2C:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 44
	                slv_reg44[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2D:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 45
	                slv_reg45[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2E:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 46
	                slv_reg46[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h2F:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 47
	                slv_reg47[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h30:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 48
	                slv_reg48[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h31:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 49
	                slv_reg49[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h32:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 50
	                slv_reg50[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h33:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 51
	                slv_reg51[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h34:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 52
	                slv_reg52[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h35:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 53
	                slv_reg53[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h36:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 54
	                slv_reg54[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h37:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 55
	                slv_reg55[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h38:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 56
	                slv_reg56[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h39:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 57
	                slv_reg57[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3A:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 58
	                slv_reg58[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3B:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 59
	                slv_reg59[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3C:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 60
	                slv_reg60[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3D:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 61
	                slv_reg61[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3E:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 62
	                slv_reg62[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          6'h3F:
	            for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
	              if ( S_AXI_WSTRB[byte_index] == 1 ) begin
	                // Respective byte enables are asserted as per write strobes 
	                // Slave register 63
	                slv_reg63[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
	              end  
	          default : begin
	                      slv_reg0 <= slv_reg0;
	                      slv_reg1 <= slv_reg1;
	                      slv_reg2 <= slv_reg2;
	                      slv_reg3 <= slv_reg3;
	                      slv_reg4 <= slv_reg4;
	                      slv_reg5 <= slv_reg5;
	                      slv_reg6 <= slv_reg6;
	                      slv_reg7 <= slv_reg7;
	                      slv_reg8 <= slv_reg8;
	                      slv_reg9 <= slv_reg9;
	                      slv_reg10 <= slv_reg10;
	                      slv_reg11 <= slv_reg11;
	                      slv_reg12 <= slv_reg12;
	                      slv_reg13 <= slv_reg13;
	                      slv_reg14 <= slv_reg14;
	                      slv_reg15 <= slv_reg15;
	                      slv_reg16 <= slv_reg16;
	                      slv_reg17 <= slv_reg17;
	                      slv_reg18 <= slv_reg18;
	                      slv_reg19 <= slv_reg19;
	                      slv_reg20 <= slv_reg20;
	                      slv_reg21 <= slv_reg21;
	                      slv_reg22 <= slv_reg22;
	                      slv_reg23 <= slv_reg23;
	                      slv_reg24 <= slv_reg24;
	                      slv_reg25 <= slv_reg25;
	                      slv_reg26 <= slv_reg26;
	                      slv_reg27 <= slv_reg27;
	                      slv_reg28 <= slv_reg28;
	                      slv_reg29 <= slv_reg29;
	                      slv_reg30 <= slv_reg30;
	                      slv_reg31 <= slv_reg31;
	                      slv_reg32 <= slv_reg32;
	                      slv_reg33 <= slv_reg33;
	                      slv_reg34 <= slv_reg34;
	                      slv_reg35 <= slv_reg35;
	                      slv_reg36 <= slv_reg36;
	                      slv_reg37 <= slv_reg37;
	                      slv_reg38 <= slv_reg38;
	                      slv_reg39 <= slv_reg39;
	                      slv_reg40 <= slv_reg40;
	                      slv_reg41 <= slv_reg41;
	                      slv_reg42 <= slv_reg42;
	                      slv_reg43 <= slv_reg43;
	                      slv_reg44 <= slv_reg44;
	                      slv_reg45 <= slv_reg45;
	                      slv_reg46 <= slv_reg46;
	                      slv_reg47 <= slv_reg47;
	                      slv_reg48 <= slv_reg48;
	                      slv_reg49 <= slv_reg49;
	                      slv_reg50 <= slv_reg50;
	                      slv_reg51 <= slv_reg51;
	                      slv_reg52 <= slv_reg52;
	                      slv_reg53 <= slv_reg53;
	                      slv_reg54 <= slv_reg54;
	                      slv_reg55 <= slv_reg55;
	                      slv_reg56 <= slv_reg56;
	                      slv_reg57 <= slv_reg57;
	                      slv_reg58 <= slv_reg58;
	                      slv_reg59 <= slv_reg59;
	                      slv_reg60 <= slv_reg60;
	                      slv_reg61 <= slv_reg61;
	                      slv_reg62 <= slv_reg62;
	                      slv_reg63 <= slv_reg63;
	                    end
	        endcase
	      end
	  end
	end    

	// Implement write response logic generation
	// The write response and response valid signals are asserted by the slave 
	// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.  
	// This marks the acceptance of address and indicates the status of 
	// write transaction.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_bvalid  <= 0;
	      axi_bresp   <= 2'b0;
	    end 
	  else
	    begin    
	      if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
	        begin
	          // indicates a valid write response is available
	          axi_bvalid <= 1'b1;
	          axi_bresp  <= 2'b0; // 'OKAY' response 
	        end                   // work error responses in future
	      else
	        begin
	          if (S_AXI_BREADY && axi_bvalid) 
	            //check if bready is asserted while bvalid is high) 
	            //(there is a possibility that bready is always asserted high)   
	            begin
	              axi_bvalid <= 1'b0; 
	            end  
	        end
	    end
	end   

	// Implement axi_arready generation
	// axi_arready is asserted for one S_AXI_ACLK clock cycle when
	// S_AXI_ARVALID is asserted. axi_awready is 
	// de-asserted when reset (active low) is asserted. 
	// The read address is also latched when S_AXI_ARVALID is 
	// asserted. axi_araddr is reset to zero on reset assertion.

	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_arready <= 1'b0;
	      axi_araddr  <= 32'b0;
	    end 
	  else
	    begin    
	      if (~axi_arready && S_AXI_ARVALID)
	        begin
	          // indicates that the slave has acceped the valid read address
	          axi_arready <= 1'b1;
	          // Read address latching
	          axi_araddr  <= S_AXI_ARADDR;
	        end
	      else
	        begin
	          axi_arready <= 1'b0;
	        end
	    end 
	end       

	// Implement axi_arvalid generation
	// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both 
	// S_AXI_ARVALID and axi_arready are asserted. The slave registers 
	// data are available on the axi_rdata bus at this instance. The 
	// assertion of axi_rvalid marks the validity of read data on the 
	// bus and axi_rresp indicates the status of read transaction.axi_rvalid 
	// is deasserted on reset (active low). axi_rresp and axi_rdata are 
	// cleared to zero on reset (active low).  
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rvalid <= 0;
	      axi_rresp  <= 0;
	    end 
	  else
	    begin    
	      if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
	        begin
	          // Valid read data is available at the read data bus
	          axi_rvalid <= 1'b1;
	          axi_rresp  <= 2'b0; // 'OKAY' response
	        end   
	      else if (axi_rvalid && S_AXI_RREADY)
	        begin
	          // Read data is accepted by the master
	          axi_rvalid <= 1'b0;
	        end                
	    end
	end    

	// Implement memory mapped register select and read logic generation
	// Slave register read enable is asserted when valid address is available
	// and the slave is ready to accept the read address.
	assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
	always @(*)
	begin
	      // Address decoding for reading registers
		  
		  reg_data_out <= reg_rd_data;
		  
	      // case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
	        // 6'h00   : reg_data_out <= 32'h55aa_0001;
	        // 6'h01   : reg_data_out <= slv_reg1;
	        // 6'h02   : reg_data_out <= slv_reg2;
	        // 6'h03   : reg_data_out <= slv_reg3;
	        // 6'h04   : reg_data_out <= slv_reg4;
	        // 6'h05   : reg_data_out <= slv_reg5;
	        // 6'h06   : reg_data_out <= slv_reg6;
	        // 6'h07   : reg_data_out <= slv_reg7;
	        // 6'h08   : reg_data_out <= slv_reg8;
	        // 6'h09   : reg_data_out <= slv_reg9;
	        // 6'h0A   : reg_data_out <= slv_reg10;
	        // 6'h0B   : reg_data_out <= slv_reg11;
	        // 6'h0C   : reg_data_out <= slv_reg12;
	        // 6'h0D   : reg_data_out <= slv_reg13;
	        // 6'h0E   : reg_data_out <= slv_reg14;
	        // 6'h0F   : reg_data_out <= slv_reg15;
	        // 6'h10   : reg_data_out <= slv_reg16;
	        // 6'h11   : reg_data_out <= slv_reg17;
	        // 6'h12   : reg_data_out <= slv_reg18;
	        // 6'h13   : reg_data_out <= slv_reg19;
	        // 6'h14   : reg_data_out <= slv_reg20;
	        // 6'h15   : reg_data_out <= slv_reg21;
	        // 6'h16   : reg_data_out <= slv_reg22;
	        // 6'h17   : reg_data_out <= slv_reg23;
	        // 6'h18   : reg_data_out <= slv_reg24;
	        // 6'h19   : reg_data_out <= slv_reg25;
	        // 6'h1A   : reg_data_out <= slv_reg26;
	        // 6'h1B   : reg_data_out <= slv_reg27;
	        // 6'h1C   : reg_data_out <= slv_reg28;
	        // 6'h1D   : reg_data_out <= slv_reg29;
	        // 6'h1E   : reg_data_out <= slv_reg30;
	        // 6'h1F   : reg_data_out <= reg_rd_data;
			
			//
	        // 6'h20   : reg_data_out <= slv_reg32;
	        // 6'h21   : reg_data_out <= slv_reg33;
	        // 6'h22   : reg_data_out <= slv_reg34;
	        // 6'h23   : reg_data_out <= slv_reg35;
	        // 6'h24   : reg_data_out <= slv_reg36;
	        // 6'h25   : reg_data_out <= slv_reg37;
	        // 6'h26   : reg_data_out <= slv_reg38;
	        // 6'h27   : reg_data_out <= slv_reg39;
	        // 6'h28   : reg_data_out <= slv_reg40;
	        // 6'h29   : reg_data_out <= slv_reg41;
	        // 6'h2A   : reg_data_out <= slv_reg42;
	        // 6'h2B   : reg_data_out <= slv_reg43;
	        // 6'h2C   : reg_data_out <= slv_reg44;
	        // 6'h2D   : reg_data_out <= slv_reg45;
	        // 6'h2E   : reg_data_out <= slv_reg46;
	        // 6'h2F   : reg_data_out <= slv_reg47;
	        // 6'h30   : reg_data_out <= slv_reg48;
	        // 6'h31   : reg_data_out <= slv_reg49;
	        // 6'h32   : reg_data_out <= slv_reg50;
	        // 6'h33   : reg_data_out <= slv_reg51;
	        // 6'h34   : reg_data_out <= slv_reg52;
	        // 6'h35   : reg_data_out <= slv_reg53;
	        // 6'h36   : reg_data_out <= slv_reg54;
	        // 6'h37   : reg_data_out <= slv_reg55;
	        // 6'h38   : reg_data_out <= slv_reg56;
	        // 6'h39   : reg_data_out <= slv_reg57;
	        // 6'h3A   : reg_data_out <= slv_reg58;
	        // 6'h3B   : reg_data_out <= slv_reg59;
	        // 6'h3C   : reg_data_out <= slv_reg60;
	        // 6'h3D   : reg_data_out <= slv_reg61;
	        // 6'h3E   : reg_data_out <= slv_reg62;
	        // 6'h3F   : reg_data_out <= slv_reg63;
	        // default : reg_data_out <= 0;
	      // endcase
	end

	// Output register or memory read data
	always @( posedge S_AXI_ACLK )
	begin
	  if ( S_AXI_ARESETN == 1'b0 )
	    begin
	      axi_rdata  <= 0;
	    end 
	  else
	    begin    
	      // When there is a valid read address (S_AXI_ARVALID) with 
	      // acceptance of read address by the slave (axi_arready), 
	      // output the read dada 
	      if (slv_reg_rden)
	        begin
	          axi_rdata <= reg_data_out;     // register read data
	        end   
	    end
	end    

	// Add user logic here
assign reg_wr_addr = axi_awaddr[7:2];
assign reg_rd_addr = S_AXI_ARADDR[7:2];
//assign reg_rd_addr = axi_araddr[7:2];
assign reg_wr_en = slv_reg_wren;
assign reg_wr_data = S_AXI_WDATA;
assign reg_rd_en = slv_reg_rden;
	// User logic ends

	endmodule

更改后IP配置有所变化,如下图所示:

1、IP基本信息;

2、IP可以使用的FPGA FAMILY范围,由于工程选择的是A7,这里默认只能A7工程调用此模块,如需其他类型FPGA使用,可以在这里添加FAMILY;

3、文件分类,可以默认不管;

4、接口定义,这里显示所有对外接口。

红色框图表示自定义的接口,也可以将自定义接口设置成总线形式,如下图所示:

        选中需要组合的接口,右键选择Add Bus interface;

1、点击设置,这里选择BRAM模式总线;

2、总线名称。

然后映射读写总线信息,先映射写,如下图所示:

 总线需要添加时钟,不然会有WARNING,添加方式如下图所示:

添加完毕后生成IP,如下图所示:

添加自定义库

生成的IP需要添加到工程库里,添加方式如下图所示:

找到IP地址目录,添加如下:

添加完成后即可在IP里找到自定义的IP,如下图所示:

 

IP的添加方式到这里结束,有问题欢迎提问。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2087636.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

探秘紫白洋桔梗花语:勇气、爱情、希望与清晰的象征解读

在缤纷多彩的花卉世界中&#xff0c;紫白洋桔梗宛如一位神秘而优雅的仙子&#xff0c;悄然绽放着独特的魅力。它那淡雅的色彩与别致的花形&#xff0c;令人一见倾心&#xff0c;而其背后蕴含的丰富花语&#xff0c;更是如同隐藏的宝藏一般&#xff0c;等待着我们去细细探寻与解…

蓝花楹花语探秘:从宁静忧郁到等待爱情的深刻寓意

在时光的长河中&#xff0c;有一种花朵宛如梦幻的精灵&#xff0c;每当它绽放之时&#xff0c;那一片绚烂的蓝紫色便如同璀璨的星空倾洒人间&#xff0c;它就是蓝花楹。蓝花楹那独特的身姿和醉人的色彩&#xff0c;仿佛自带一种神秘的魔力&#xff0c;吸引着无数人驻足凝望。而…

vue3+ts+vite+electron+electron-store+electron-builder打包可安装包

yarn create vite yarn add electron yarn add electron-store yarn add electron-builder 新增main.js、preload.js // main.js const { app, BrowserWindow, ipcMain, globalShortcut } require(electron) const path require(path) let store // 我们将在稍后动态导入 el…

Flink优化之--旁路缓存和异步IO

Apache Flink 是一个开源流处理框架&#xff0c;以其高吞吐量、低延迟和事件驱动的处理能力著称。随着大数据和实时处理需求的不断增加&#xff0c;Flink 在许多行业和应用场景中得到了广泛应用&#xff0c;如金融风控、物联网数据处理、实时数据分析等。然而&#xff0c;随着数…

如何学习Linux性能优化?

你是否也曾跟我一样&#xff0c;看了很多书、学了很多Linux性能工具&#xff0c;但在面对Linux性能问题时&#xff0c;还是束手无策&#xff1f;实际上&#xff0c;性能分析和优化始终是大多数软件工程师的一个痛点。但是&#xff0c;面对难题&#xff0c;我们真的就无解了吗&a…

2.11键盘事件

目录 实验原理 实验代码 实验结果 实验原理 简单、常用的键盘事件是等待按键事件&#xff0c;它由 waitKey 函数来实现。无论是刚开始学习 OpenCV&#xff0c;还是使用 OpenCV 进行开发调试&#xff0c;都可以看到waitKey 函数的身影&#xff0c;然而基础的东西往往容易忽略…

[Java]MyBatis轻松拿下

介绍 在业务开发过程中, 都是使用java程序完成数据库的操作, 目前最主流的技术就是MyBatis MyBatis是一款优秀的 持久层 框架&#xff0c;用于简化JDBC的开发。 官网: https://mybatis.org/mybatis-3/zh/index.htmlmybatis是Apache的一个开源项目iBatis, 2010年迁移到了googl…

Day00_场景题

文章目录 资料项目经历技能清单自我介绍QPS和TPS?如何设计一个排行榜的功能?如何解决大文件上传问题延时任务处理场景如何设计一个秒杀系统?分布式幂等性如何设计?如果你的系统的QPS 突然提升10倍你会怎么设计?如何从零搭建 10 万级QPS 大流量、高并发优惠券系统?高 QPS,…

OpenCV绘图函数(9)填充多边形函数fillPoly()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 填充一个或多个多边形轮廓所包围的区域。 函数 cv::fillPoly 填充由若干个多边形轮廓所包围的区域。该函数可以填充复杂的区域&#xff0c;例如带…

【大模型】GPT系列模型基础

前言&#xff1a;GPT整体上与transformer结构相似&#xff0c;但只用了decoder部分。 目录 1. GPT2. GPT23. GPT34. 知识补充4.1 下游任务实现方式4.2 sparse attention 1. GPT 预训练&#xff1a;无监督&#xff0c;根据前k个词预测下一个词的概率。微调&#xff1a; 有监督&a…

AI嵌入式人工智能开发 --- 【1】初始RKNPU

目录 一、NPU的由来 二、RKNPU介绍 三、RKNPU单核框架 3.1 AHB/AXI 接口 3.2 卷积神经网络加速单元&#xff08;CNA&#xff09; 3.3 数据处理单元&#xff08;Data Processing Unit&#xff0c;DPU&#xff09; 3.4 平面处理单元&#xff08;Planar Processing Unit&a…

#驱动开发

内核模块 字符设备驱动 中断、内核定时器 裸机开发和驱动开发的区别&#xff1f; 裸机开发 驱动开发&#xff08;基于内核&#xff09; 相同点 都能够控制硬件&#xff08;本质&#xff1a;操作寄存器&#xff09; 不同点 用C语言给对应的地址里面写值 按照一定的框架格式…

【DSP+FPGA】基于DSP+FPGA XC7K325T与TMS320C6678的通用信号处理平台

DSP FPGA 协同处理架构板载 1 个TMS320C6678 多核DSP处理节点板载 1 片 XC7K325T FPGA处理节点板载 1 个FMC 接口板载4路SFP光纤接口FPGA 与 DSP 之间采用高速Rapid IO互联 基于FPGA与DSP协同处理架构的通用高性能实时信号处理平台&#xff0c;该平台采用1片TI的KeyStone系列多…

CSS3 文本效果(text-shadow,box-shadow,white-space等)

一 text-shadow text-shadow 属性是 CSS3 中用于为文本添加阴影效果的工具。它可以增强文本的可读性和视觉吸引力&#xff0c;提供丰富的视觉效果 1 语法 text-shadow: offset-x offset-y blur-radius color;offset-x&#xff1a;阴影相对于文本的水平偏移量。可以是正值&am…

c/c++: function和procedure的区别

https://www.cs.nthu.edu.tw/~ychung/slides/CSC4180/Alfred%20V.%20Aho,%20Monica%20S.%20Lam,%20Ravi%20Sethi,%20Jeffrey%20D.%20Ullman-Compilers%20-%20Principles,%20Techniques,%20and%20Tools-Pearson_Addison%20Wesley%20(2006).pdf 函数与过程的区别&#xff0c;一个…

AI语音识别神器Openai Whisper对中文的支持如何?

文章目录 前言一、资料准备二、Whisper环境搭建第一步&#xff1a;安装whisper第二步&#xff1a;安装ffmpeg 三、Whisper测试总结其他相关 前言 语音识别一直以来都是人工智能领域中一个不容忽视的技术&#xff0c;随着大模型时代的到来&#xff0c;这项技术也发生了质的变化…

解决MAC电脑SVN Android studio不能提交.so文件相关

目录 前言 确认问题原因 修改 SVN 配置文件 验证配置是否生效 其他注意事项 总结 前言 在使用 macOS 进行开发时&#xff0c;可能会遇到通过 SVN 在 Android Studio 中无法提交 .so 文件的问题。这通常是由于 SVN 配置文件中的 global-ignores 设置导致的&#xff0c;…

比特币牛市将至背后

作者&#xff1a;Arthur Hayes 编译&#xff1a;Liam 「此处所表达的任何观点均为作者个人意见&#xff0c;不应作为投资决策依据&#xff0c;也不应被视为参与投资交易的推荐或建议。」 我打破常规&#xff0c;前往南半球滑雪两周&#xff0c;为北半球的暑假画上圆满的句号。我…

03. SpringBoot 项目创建

接下来我们将要完成一个基础的 Springboot 项目的创建&#xff0c;并且将项目上传到 Gitee 1. 查看官网&#xff0c;选择版本 学习任何一门技术&#xff0c;一定要学会从官网了解一手信息&#xff0c;无论是哪个博主的博客都是有时效性的&#xff0c;我们要掌握这样的习惯&…

Runtime Asset Database 运行时资产数据库

运行时资产数据库是一个库,旨在简化Unity应用程序中运行时保存和加载子系统的实现。此库复制并扩展了Unity编辑器中常见的预制件、预制件变体和资源的概念,使其在运行时比以往任何时候都更容易管理和操纵游戏资源,并在运行时动态实现与Unity编辑器类似的工作流。 Unity开发人…