招联金融基于 Apache Doris 数仓升级:单集群 QPS 超 10w,存储成本降低 70%

news2024/11/16 18:02:44

在竞争激烈的消费金融市场中,有效利用海量数据、提升业务运营效率是赢得市场的关键。早期招联采用典型的 Lambda 架构提供业务报表、数据运营、个性推荐、风险控制等数据服务,而 Lambda 过多的技术栈也引发了数据孤岛、查询效率不足、代码复用性差以及开发运维成本高昂等诸多问题。因此,招联引入 Apache Doris 对架构进行了升级,不仅替换了冗余的技术栈,还实现了实时数仓存储和计算引擎的统一,从而大幅精简了整体架构。

如今,招联内部已有 40+ 个项目使用 Apache Doris ,拥有超百台集群节点,个别集群峰值 QPS 可达 10w+ 。通过应用 Doris ,招联金融在多场景中均有显著的收益,比如标签关联计算效率相较之前有 6 倍的提升,同等规模数据存储成本节省超 2/3,真正实现了降本提效。

存在的问题

早期架构由实时数仓和离线数仓两套组成,是较为典型的 Lambda 架构。由于历史原因,整个架构非常复杂,用到 Hbase、kafka、Clickhouse、 Spark、Impala、Hive、Kudu、Vertica 等多种技术栈。

存在的问题.PNG

该架构虽功能完备,但由于其技术栈的复杂度及能力的局限性也带来了诸多问题:

  • 运维依赖性高:Lambda 架构包含较多的技术组件,且部分组件为闭源、内部逻辑不透明,强依赖厂家技术支持。
  • 资源利用率低:实时及离线两套架构间代码无法复用,这无疑增加了维护成本;且两套架构间资源无法合理共享和调度、数据无法复用,资源利用率非常低。
  • 数据时效性低:组件多、数据处理链路也长,多组件数据传输影响了时效性,降低了数据查询的效率。
  • 并发能力弱: Vertica、Impala 等部分查询引擎无法应对高并发场景的需求。

升级目标

基于以上待解决的问题,招联对未来即将升级的新架构提出了几点要求:

  • 架构简化:精简架构,统一组件标准,解决不同架构间兼容性问题;尽量采用开源软件,底层逻辑透明化,确保平台升级迭代可控,降低运维成本及难度。
  • 混合部署与弹性伸缩:需要满足在线混合部署的使用条件,支持弹性扩容,最大化资源利用率,实现降本增效。
  • 实时分析:搭建高性能实时数仓能力,可支持上万超高 QPS、秒级别查询响应,实现数据分析实时化。

在上述目标驱使下,招联迅速定位到 Apache Doris 这一开源实时数据仓库 ,Doris 以其简洁的架构设计、丰富的数据接口、高效的查询性能以及低廉的运维成本深得内部认可,可为后续的升级和优化提供强有力的技术支撑。

数仓生态全新升级

数仓生态全新升级.PNG

基于 Apache Doris 的数仓生态相较于旧架构实现了极大的精简。主要变动集中在实时数仓部分,使用 Doris 替代了原先 Clickhouse、Hbase、Kafka、Vertica 等复杂的技术栈

尽管当前架构仍然保留了离线和实时两套处理链路,但在系统设计上实现了高度的代码可复用性,Doris 实时数仓所有代码均可从离线数仓 1:1 复制,以保证两套架构的逻辑一致性和维护便捷性。不仅如此,数据也最大程度在实时及离线数仓中进行了复用,当数据进入实时数仓,经过 DWD 层、DWS 层加工处理后会同时同步到离线数仓中,既提高了数据的时效性,又确保了两套架构数据的一致性。

Apache Doris 的引入,不仅大幅简化了数仓生态整体架构,硬件成本也实现约 10% 的降低(如累加开发、运维成本,将有更大比例的节约)。同时,得益于代码和数据的高复用率,架构的运维管理也变得便捷高效。

基于 Apache Doris 的实时数仓

基于 Apache Doris 的实时数仓.png

具体到实时数仓来说,原先由 Flink、 Kafka 、HBase 应对实时场景,Clickhouse 、Vertica 及部分 Doris 能力应对准实时场景。当前只保留 Flink 进行数据采集,其他组件均替换为 Doris, Flink 采集数据到 Doris 中,经由 ODS、DWD、DWS、DM/APP 层处理后,由 Doris 直接提供查询及分析服务。

此外,存储和计算引擎也都统一到 Doris,并通过 CCR 实现 Doris 集群读写分离和数据同步,避免单点压力过大导致系统性能下降,提高了数据查询效率以及系统的稳定性。

如何避免数据乱序:

  • Watermark 机制:实时数仓中,Flink 负责将 ODS 中数据消费到 Doris 中,为避免该过程出现数据乱序,可利用 Watermark 机制来容忍数据迟到,确保数据的时效性和正确性。
  • 任务串行: 为确保数据的连续性,在调度系统中实现了多批次任务串行机制,上一批次任务未完成时,下一批次就不会开始。同时引入动态窗口机制,每当发起任务时,会自动获取上一批次最新业务节点到此刻时间节点之间的数据,既能保证了批次之间的相互独立,又确保了数据处理的连续性和时效性。

Watermark 机制.png

任务串行.png

01 客群筛选场景

在市场营销、风险控制等精细化数据运营中,客群筛选是确认目标人群、制定营销策略的重要手段。

在客群筛选过程中,通常需要对集市中多张标签表进行关联计算,大约需要处理 2.4 亿条数据。之前使用 Vertica 计算引擎进行处理时,耗时 30-60 分钟;替换为 Doris 之后,仅用时 5-10 分钟即可完成,相较之前有 6 倍的性能提升。除了显著的性能提升外,Doris 作为一款开源的数据库,无需支付任何许可费用,这与商业化产品 Vertica 相比有着显著的成本优势。

客群筛选场景.png

02 高频点查场景

对于某场景需求,招联需确保系统的 QPS(每秒查询次数)达到 10万次,同时,单次接口响应时间不能超过 60 ms。这意味着,除去网络传输与程序逻辑处理的耗时后,数据查询耗时需控制在 15 ms 内,对系统的性能要求十分严苛。此外,系统还承载着每日庞大的数据更新任务,最大更新量高达 20 亿条,这要求系统不仅能应对高并发,还要确保在高负载下依然能够稳定运行。

之前招联使用 Redis 来应对高并发需求,其并发能力和稳定性基本可以满足要求。但 Redis 的核心问题在于使用成本非常高昂。相比之下,Doris 不仅能够支持单节点上万 QPS 的超高并发,也具备大规模数据的快速写入能力,2000 万数据仅需 4 分钟即可写入完成。最为关键的是,Doris 在成本方面展现出非常显著的优势。

在处理同等规模的数据量时,Doris 仅需 Redis 1/3 的内存,实现存储成本的大幅降低与效率的显著提升,真正做到了降本增效。

数据传输场景

从前文可知,依托于 Doris 跨集群数据复制(CCR)能力,已实现 Doris 集群读写分离;另外,因招联内部业务已大范围应用 Doris, CCR 也成为数据库间数据传输的必然选择。

Apache Doris 跨集群数据复制 CCR 能够在库/表级别将源集群的数据变更同步到目标集群,可用于提升在线服务的数据可用性、隔离在离线负载、建设两地三中心等。详情可参考往期技术解析博客:跨集群复制功能 CCR

从测试数据来可知 CCR 传输效果:

  • 存量数据:对于千万级数据,可在几分钟内完成同步;对于亿级别的数据,也可在预期范围内完成,比如 1 亿数据约为 220G,使用 CCR 仅耗时 1500+ 秒(25分钟)。

  • 增量数据:增量数据的同步性能则更加优异,千万级增量数据同步 1 分钟内即可完成,亿级别数据同步仅需不到 8分钟。

数据传输场景.png

经验分享

1. CCR 超时: (TRollbackTxnResult_({Status:TStatus({StatusCode:OK ErrorMsgs:[l}) MasterAdd ress:<nil>}) )

网络波动存在丢包导致 RPC 超时,为确保网络稳定,可升级 CCR 版本至 2.1.4 版本可支持设置 RPC 超时时间。

2. Create table as 语法导致的 slot 一系列问题:

2.0 版本在处理 create table as 语句时,采用的是旧执行优化器,而因旧执行优化器为列字段裁剪,普遍存在 slot 相关问题。升级为 2.1 以上版本后,slot 相关问题得以解决;可以创建临时表 xxx,执行 set enable_nereids_dml = ‘true’来规避该问题。

结束语

截止当前,招联金融内部已有 40+ 个项目接入 Apache Doris ,总集群数近十个,集群节点超百个,某集群峰值 QPS 可达 10w+ 。未来,招联还将持续推广 Apache Doris 在内部的使用范围,并将对存算分离、数据湖能力进行探索及应用:

  • 存算分离架构:正在探索推进中,未来将尝试基于 Apache Doris 3.0 新版本进行整体架构升级演进,以支持更灵活的弹性部署、降低运维成本。

  • 数据湖分析:未来希望借助 Doris 数据湖的能力,统一开发管理工具,满足多源异构数据的存储和分析需求;统一数据访问接口,提升异构数据访问效率;基于丰富数据管理能力,提升数据质量;并将利用 Doris 特性加速数据湖上查询效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2085918.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI算法平台训练站裸土检测算法训练裸土检测算法源码

在全球化进程加快与环境问题日益突出的今天&#xff0c;裸土检测成为了环境监测和土壤管理中不可或缺的一环。裸土指的是没有植被覆盖的土壤区域&#xff0c;这些区域易受侵蚀&#xff0c;并可能导致土壤流失和环境退化。为了有效应对这些问题&#xff0c;裸土检测算法应运而生…

Redis持久化与主从同步

1 淘汰策略 127.0.0.1:6379> help expireEXPIRE key secondssummary: Set a keys time to live in secondssince: 1.0.0group: generic127.0.0.1:6379> help PEXPIREPEXPIRE key millisecondssummary: Set a keys time to live in millisecondssince: 2.6.0group: gener…

【CSP:202112-1】序列查询(Java)

题目链接 202112-1 序列查询 题目描述 求解思路 模拟&#xff1a;a数组可以看作是记录 f ( x ) f(x) f(x) 函数值发生变化出的 x x x 点&#xff08;每次自增1&#xff09;。因此将每段相同数值的 f ( x ) f(x) f(x) 用乘法计算出来即可&#xff0c;最后记得要加上最后一…

Java Web —— 第九天(事务)

事务管理 & AOP 事务回顾 概念 事务 是一组操作的集合&#xff0c;它是一个不可分割的工作单位&#xff0c;这些操作 要么同时成功&#xff0c;要么同时失败 操作 开启事务(一组操作开始前&#xff0c;开启事务): start transaction / begin 提交事务(这组操作全部成功…

服务器访问端口命令

服务器访问端口命令是一组用于管理服务器端口的命令行指令。服务器端口是用于与外部设备或应用程序进行通信的逻辑通道&#xff0c;它允许数据在服务器和其他设备之间传输。以下是一些常见的服务器访问端口命令。 netstat&#xff1a;这个命令用于检查服务器上当前的网络连接和…

FPGA第 5 篇,FPGA技术优略势,FPGA学习方向,FPGA学习路线(FPGA专业知识的学习方向,FPGA现场可编程门阵列学习路线和方向)

前言 前几篇讲了一下FPGA的发展和应用&#xff0c;以及未来前景。具体详细&#xff0c;请看 FPGA发展和应用&#xff0c;以及未来前景https://blog.csdn.net/weixin_65793170/category_12665249.html 这里我们来&#xff0c;记录一下&#xff0c;FPGA专业知识的学习路线 一.…

OpenAI remove key access while using AAD authentication

题意&#xff1a;“OpenAI 在使用 AAD 认证时移除了密钥访问权限” 问题背景&#xff1a; I am calling Azure OpenAI API in my python code. To set it up, we need to provide a few parameters, one of which is openai.api_key. There are 2 options to get this value -…

力扣hot100-动态规划

文章目录 概念动态规划基本思想常见步骤常用技巧常见问题类型 动态规划题目题目&#xff1a; 爬楼梯题解 概念 动态规划 动态规划&#xff08;Dynamic Programming&#xff0c;简称DP&#xff09;是一种解决问题的算法思想&#xff0c;通常用于优化问题。它的核心思想是将一个…

K8S声明式的管理方式

一、K8S声明式的管理方式&#xff1a; 1、适合对资源的修改操作 2、声明式管理依赖于yaml文件&#xff0c;所有的内容都在yaml文件中声明 3、编辑好的yml文件还是要靠陈述式命令发布到K8S集群中 二、K8S中支持三种声明式的资源管理方式&#xff1a; 1、deployment格式&…

如何用Java SpringBoot Vue搭建创新创业学分管理系统?实战教程

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

GLM大模型 - CogVideoX:5B 开源,2B 转为 Apache 协议

8月6日&#xff0c;我们发布并开源了CogVideoX-2B模型&#xff0c;受到广大开发者的欢迎。 为了促进社区的自主使用和开放式创新&#xff0c;我们现决定将参数规模更大、性能更强的产品级模型 CogVideoX-5B 开源&#xff0c;同时 CogVideoX-2B 的开源协议调整为更加开放的Apac…

阿里云链接远程桌面Ubuntu22.4,出现的各种问题汇总,太艰辛,所以发出来,帮助一下后边的小伙伴

问题一&#xff1a;远程登录桌面计算机名写什么&#xff1a;写ip,公网ip,用户名不要填 问题二 Win10远程连接Ubuntu20.04桌面黑屏的问题 如果你是用浏览器连接上了云服务器&#xff0c;那么请先logout!

算法的学习笔记—从 1 到 n 整数中 1 出现的次数(牛客JZ43)

&#x1f600;前言 在编程面试中&#xff0c;求解从 1 到 n 的整数中数字 1 出现的次数是一个常见的挑战。该问题的关键在于如何高效地统计数字 1 出现的次数。本文将详细分析该问题的解题思路&#xff0c;并提供一个高效的 Java 实现。 &#x1f3e0;个人主页&#xff1a;尘觉…

java 切面日志打印出参入参

切面Controller出入参日志打印 项目结构 切面日志对controller下所有的方法生效 切面代码 Slf4j Aspect Component public class ControllerLogAspect {// 定义一个切点&#xff0c;拦截所有Controller层的public方法Before("execution(public * com.jzt.market.cont…

Android解析异步消息处理机制

文章目录 Android解析异步消息处理机制MessageHandlerMessageQueueLooper Android解析异步消息处理机制 Android中的异步消息处理主要由4个部分组成&#xff1a;Message、Handler、MessageQueue和Looper。其中Message和Handler在上一小节中我们已经接触过了&#xff0c;而Mess…

大数据基础:离线与实时数仓区别和建设思路

文章目录 离线与实时数仓区别和建设思路 一、离线数仓与实时数仓区别 ​​​​​​​二、实时数仓建设思路 离线与实时数仓区别和建设思路 ​​​​​​​一、离线数仓与实时数仓区别 离线数据与实时数仓区别如下&#xff1a; 对比方面 离线数仓 实时数仓 架构选择 传…

ComsolMatlab 两级串联扩张式消声器仿真解与解析解

消声器的声学性能通常要求消声器在工作频率范围内有较大的消声量以及较宽的消声频带。常用的消声器声学性能评价指标通常有传递损失、插入损失、减噪量三种。其中插入损失只能反映整个系统在安装消声器前后声学特性的变化&#xff0c;并不能直接反映消声器本身单独具有的属性。…

计算机毕业设计选题推荐-中药材进存销管理系统-Java/Python项目实战

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

假期学习--对象底层结构和继承链

OC本质底层实现转化其实都是C/C代码。 OC对象的本质就是结构体。 NSObject底层是struct objc_object结构体 &#xff1b;struct objc_class : objc_object { …省略无关代码 // Class ISA; //ISA(从objc_object继承过来的) Class superclass; //指向其父类 cache_t cache…

王伊朵闪耀“快乐阳光”舞台 再夺全国冠军

在近日落幕的“赛克杯”第20届快乐阳光少年儿童歌曲卡拉OK电视大赛全国总决赛中&#xff0c;就读于北京市建华实验学校&#xff0c;年仅11岁的小选手王伊朵以其出色的唱功和卓越的舞台表现&#xff0c;一举夺得全国冠军&#xff0c;成为本次大赛一颗耀眼的小明星。 王伊朵自小对…