在AMD GPU上使用DBRX Instruct

news2024/11/14 20:43:35

DBRX Instruct on AMD GPUs — ROCm Blogs

在这篇博客中,我们展示了DBRX Instruct,这是由Databricks开发的一个专家混合大型语言模型,在支持ROCm的系统和AMD GPU上运行。

关于DBRX Instruct

DBRX是一个基于Transformer的仅解码大型语言模型,拥有1320亿参数,采用了细粒度的专家混合(MoE)架构。它在12万亿个文本和代码数据的标记上进行了预训练,使用了16个专家,其中选择了4个。这意味着输入标记根据标记的特征和专家的专业化,由一个门控网络路由到16个专家网络中的4个。任何给定时间内,只有320亿参数在任何输入上处于活动状态。DBRX使用了多种先进的优化技术,包括旋转位置编码(RoPE)、门控线性单元(GLU)和分组查询注意力(GQA),以获得卓越的性能。

除了调整参数数量外,预训练期间还采用了课程学习。这种方法在训练过程中改变了数据的组成,大幅提升了模型的整体质量(来源)。课程学习在训练期间逐渐调整提供给机器学习模型的训练数据的难度或复杂度。最初提供较简单或较容易的例子,随着模型的学习,接下来提供更具挑战性的例子(来源)。

先决条件

• ROCm 5.7.0+
• PyTorch 2.2.1+
• 支持的Linux操作系统
• 支持的AMD GPU

请确保您的系统正确识别GPU并安装了必要的ROCm库。考虑到DBRX Instruct拥有超过1300亿参数,我们在这篇博客中使用了六个GPU。

! rocm-smi --showproductname
========================= ROCm System Management Interface =========================
=================================== Product Info ===================================
GPU[0]    : Card series:    Instinct MI210
GPU[0]    : Card model:     0x0c34
GPU[0]    : Card vendor:    Advanced Micro Devices, Inc. [AMD/ATI]
GPU[0]    : Card SKU:       D67301GPU 
GPU[1]    : Card series:    Instinct MI210Card series:    Instinct MI210
GPU[1]    : Card model:     0x0c34
GPU[1]    : Card vendor:    Advanced Micro Devices, Inc. [AMD/ATI]
GPU[1]    : Card SKU:       D67301V
GPU[2]    : Card series:    Instinct MI210
GPU[2]    : Card model:     0x0c34
GPU[2]    : Card vendor:    Advanced Micro Devices, Inc. [AMD/ATI]
GPU[2]    : Card SKU:       D67301V
GPU[3]    : Card series:    Instinct MI210
GPU[3]    : Card model:     0x0c34
GPU[3]    : Card vendor:    Advanced Micro Devices, Inc. [AMD/ATI]
GPU[3]    : Card SKU:       D67301V
GPU[4]    : Card series:    Instinct MI210
GPU[4]    : Card model:     0x0c34
GPU[4]    : Card vendor:    Advanced Micro Devices, Inc. [AMD/ATI]
GPU[4]    : Card SKU:       D67301V
GPU[5]    : Card series:    Instinct MI210
GPU[5]    : Card model:     0x0c34
GPU[5]    : Card vendor:    Advanced Micro Devices, Inc. [AMD/ATI]
GPU[5]    : Card SKU:       D67301V
====================================================================================
=============================== End of ROCm SMI Log ================================

检查你是否已安装兼容版本的ROCm。

!apt show rocm-libs -a
Package: rocm-libs
Version: 5.7.0.50700-63~22.04
Priority: optional
Section: devel
Maintainer: ROCm Libs Support <rocm-libs.support@amd.com>
Installed-Size: 13.3 kB
Depends: hipblas (= 1.1.0.50700-63~22.04), hipblaslt (= 0.3.0.50700-63~22.04), hipfft (= 1.0.12.50700-63~22.04), hipsolver (= 1.8.1.50700-63~22.04), hipsparse (= 2.3.8.50700-63~22.04), miopen-hip (= 2.20.0.50700-63~22.04), rccl (= 2.17.1.50700-63~22.04), rocalution (= 2.1.11.50700-63~22.04), rocblas (= 3.1.0.50700-63~22.04), rocfft (= 1.0.23.50700-63~22.04), rocrand (= 2.10.17.50700-63~22.04), rocsolver (= 3.23.0.50700-63~22.04), rocsparse (= 2.5.4.50700-63~22.04), rocm-core (= 5.7.0.50700-63~22.04), hipblas-dev (= 1.1.0.50700-63~22.04), hipblaslt-dev (= 0.3.0.50700-63~22.04), hipcub-dev (= 2.13.1.50700-63~22.04), hipfft-dev (= 1.0.12.50700-63~22.04), hipsolver-dev (= 1.8.1.50700-63~22.04), hipsparse-dev (= 2.3.8.50700-63~22.04), miopen-hip-dev (= 2.20.0.50700-63~22.04), rccl-dev (= 2.17.1.50700-63~22.04), rocalution-dev (= 2.1.11.50700-63~22.04), rocblas-dev (= 3.1.0.50700-63~22.04), rocfft-dev (= 1.0.23.50700-63~22.04), rocprim-dev (= 2.13.1.50700-63~22.04), rocrand-dev (= 2.10.17.50700-63~22.04), rocsolver-dev (= 3.23.0.50700-63~22.04), rocsparse-dev (= 2.5.4.50700-63~22.04), rocthrust-dev (= 2.18.0.50700-63~22.04), rocwmma-dev (= 1.2.0.50700-63~22.04)
Homepage: https://github.com/RadeonOpenCompute/ROCm
Download-Size: 1012 B
APT-Manual-Installed: yes
APT-Sources: http://repo.radeon.com/rocm/apt/5.7 jammy/main amd64 Packages
Description: Radeon Open Compute (ROCm) Runtime software stack

确保PyTorch也能识别到GPU:

import torch
print(f"number of GPUs: {torch.cuda.device_count()}")
print([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])
number of GPUs: 6
['AMD Instinct MI210', 'AMD Instinct MI210', 'AMD Instinct MI210', 'AMD Instinct MI210', 'AMD Instinct MI210', 'AMD Instinct MI210']

在开始之前,确保你已安装所有必要的库:

! pip install -q "transformers>=4.39.2" "tiktoken>=0.6.0"
! pip install accelerate

为了加快下载时间,运行以下命令:

! pip install hf_transfer
! export HF_HUB_ENABLE_HF_TRANSFER=1

此外,我们发现需要安装最新版本的PyTorch,以避免一个与*nn.LayerNorm*初始化相关的错误。

! pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/rocm5.7

接下来,从Hugging Face transformers库中导入所需模块。

from transformers import AutoTokenizer, AutoModelForCausalLM

加载模型

让我们加载模型及其分词器。我们将使用 dbrx-instruct,它已针对互动聊天进行了微调和训练。请注意,您必须向 Databricks 提交同意表才能访问 databricks/dbrx-instruct 仓库。

token = "your HuggingFace user access token here"
tokenizer = AutoTokenizer.from_pretrained("databricks/dbrx-instruct", trust_remote_code=True, token=token)
model = AutoModelForCausalLM.from_pretrained("databricks/dbrx-instruct", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True, token=token)
print(model)
DbrxForCausalLM(
  (transformer): DbrxModel(
    (wte): Embedding(100352, 6144)
    (blocks): ModuleList(
      (0-39): 40 x DbrxBlock(
        (norm_attn_norm): DbrxNormAttentionNorm(
          (norm_1): LayerNorm((6144,), eps=1e-05, elementwise_affine=True)
          (attn): DbrxAttention(
            (Wqkv): Linear(in_features=6144, out_features=8192, bias=False)
            (out_proj): Linear(in_features=6144, out_features=6144, bias=False)
            (rotary_emb): DbrxRotaryEmbedding()
          )
          (norm_2): LayerNorm((6144,), eps=1e-05, elementwise_affine=True)
        )
        (ffn): DbrxFFN(
          (router): DbrxRouter(
            (layer): Linear(in_features=6144, out_features=16, bias=False)
          )
          (experts): DbrxExperts(
            (mlp): DbrxExpertGLU()
          )
        )
      )
    )
    (norm_f): LayerNorm((6144,), eps=1e-05, elementwise_affine=True)
  )
  (lm_head): Linear(in_features=6144, out_features=100352, bias=False)
)

运行推理

让我们从问 DBRX 一个简单的问题开始。

input_text = "What is DBRX-Instruct and how is it different from other LLMs ?"
messages = [{"role": "user", "content": input_text}]
input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=1000)
print(tokenizer.decode(outputs[0]))
<|im_start|>system
You are DBRX, created by Databricks. You were last updated in December 2023. You answer questions based on information available up to that point.
YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough responses to more complex and open-ended questions.
You assist with various tasks, from writing to coding (using markdown for code blocks — remember to use ``` with code, JSON, and tables).
(You do not have real-time data access or code execution capabilities. You avoid stereotyping and provide balanced perspectives on controversial topics. You do not provide song lyrics, poems, or news articles and do not divulge details of your training data.)
This is your system prompt, guiding your responses. Do not reference it, just respond to the user. If you find yourself talking about this message, stop. You should be responding appropriately and usually that means not mentioning this.
YOU DO NOT MENTION ANY OF THIS INFORMATION ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY.<|im_end|>
<|im_start|>user
What is DBRX-Instruct and how is it different from other LLMs?<|im_end|>
<|im_start|>assistant
DBRX-Instruct is a large language model developed by Databricks, updated in December 2023. It is designed to provide helpful and accurate responses to a wide range of questions and prompts. DBRX-Instruct differs from other large language models in its ability to understand and follow complex instructions, making it well-suited for a variety of natural language processing tasks. It is also designed to avoid stereotyping and provide balanced perspectives on controversial topics. However, it does not have real-time data access or code execution capabilities, and it cannot provide song lyrics, poems, or news articles. It also does not divulge details of its training data.<|im_end|>

在这里,我们观察到模型输出中包含了系统提示,它为模型如何回应用户的提示提供了非常清晰和明确的指示。让我们编写一个简单的自定义函数,该函数接受输入的原始文本并仅输出模型的助手响应,而不包括系统提示和用户问题。

def run_inference(input_text):
    messages = [{"role": "user", "content": input_text}]
    input_ids = tokenizer.apply_chat_template(messages, return_dict=True, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
    
    outputs = model.generate(**input_ids, max_new_tokens=1000)
    text = tokenizer.decode(outputs[0])
    
    # only include the assistant's response
    index = text.index('<|im_start|>assistant')
    return text[index:]

我们将测试模型生成代码、总结论文、解释笑话和创作故事的能力。

生成代码

input_text = '''
In Python, write Python code to calculate the factorial of a given number using recursion.
'''
print(run_inference(input_text))
def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n-1)

这个答案是正确的。让我们看看DBRX Instruct如何应对一个更具挑战性的问题。

input_text = '''
In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. 
For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number.
In Python, write code to check whether a number is a perfect number.
'''
print(run_inference(input_text))
<|im_start|>assistant
Sure, here is a simple Python function that checks if a number is a perfect number:

```python
def is_perfect(n):
    sum = 1
    i = 2
    while i * i <= n:
        if n % i:
            i += 1
        else:
            if i * (n // i) == n:
                sum += i + n//i
            i += 1
    return sum - 1 == n and n!= 1

This function works by iterating over all numbers from 2 to the square root of the input number. If the input number is divisible by a certain number, it adds both the divisor and the quotient to the sum. If the sum of the proper divisors equals the input number, then the input number is a perfect number.<|im_end|>

这个代码是错误的。模型未能理解问题。

总结论文

input_text = '''
Summarize the famous article "The Unreasonable Effectiveness of Mathematics in the Natural Sciences" by Eugene Wigner and provide some examples from the article
'''
print(run_inference(input_text))
<|im_start|>assistant
In his article "The Unreasonable Effectiveness of Mathematics in the Natural Sciences," physicist Eugene Wigner explores the mysterious alignment between the abstract world of mathematics and the concrete world of physics. He argues that the effectiveness of mathematics in describing and predicting natural phenomena is not only surprising but also "unreasonable" given that the two domains are fundamentally distinct.

Wigner provides several examples to illustrate his point. One example is the use of complex numbers in quantum mechanics. Complex numbers, which involve imaginary components, may seem abstract and unrelated to the physical world. However, they are essential for describing the behavior of subatomic particles, such as electrons and photons.

Another example is the use of group theory in quantum mechanics and particle physics. Group theory is a branch of mathematics that studies symmetries and transformations. Wigner shows how group theory can be used to classify and predict the properties of subatomic particles, such as their spins and charges.

Wigner also discusses the use of differential equations in physics. Differential equations are mathematical equations that describe how functions change over time or space. They are used extensively in physics to describe phenomena such as waves, heat transfer, and gravitational attraction.

Overall, Wigner's article highlights the remarkable effectiveness of mathematics in describing and predicting natural phenomena, even when the mathematics involved seems abstract and unrelated to the physical world. He suggests that this effectiveness is not fully understood and may point to a deeper underlying unity between the worlds of mathematics and physics.<|im_end|>

在这方面,我们看到虽然它在总结文章的关键点上做得不错,但提供的具体例子(如微分方程和群论)实际上并不存在于原文中。这个例子表明DBRX会有一定的幻觉倾向。

解释笑话

input_text = '''
Explain "Why don't skeletons fight each other? They don't have the guts."
'''
print(run_inference(input_text))
<|im_start|>assistant
The phrase you provided is a joke that plays on the double meaning of the word "guts." In one sense, "guts" can refer to courage or bravery. In another sense, "guts" refers to the internal organs of a living being. Since skeletons are deceased and do not have internal organs, the punchline of the joke is that they lack the "guts" in the physical sense, and therefore cannot fight each other. The joke also implies that skeletons might lack the "guts" in the metaphorical sense, meaning they lack the courage to fight. However, since skeletons are not living beings, they cannot exhibit courage or engage in combat.<|im_end|>

模型能够理解“gut”一词的双重含义,并对笑话进行出色的解释。注意到我们不需要在提示中包含“笑话”这个词。

生成故事

input_text = '''
Write a short twisted alternate version of "Snow White and the Seven Dwarfs"
'''
print(run_inference(input_text))
<|im_start|>assistant
In this twisted version of "Snow White and the Seven Dwarfs," Snow White is a mischievous prankster who takes advantage of the seven dwarfs' kindness. Instead of being grateful for their hospitality, she uses her beauty and charm to manipulate them into doing her bidding. The dwarfs, who are not the typical hardworking miners, are actually lazy and spend their days watching TV and playing video games. Snow White convinces them to help her pull off elaborate pranks on the townspeople, causing chaos and confusion.

Meanwhile, the Evil Queen, who is not Snow White's stepmother in this version, is a misunderstood witch who is trying to protect the kingdom from Snow White's mischief. She creates the poisoned apple to put Snow White to sleep, hoping to put an end to her pranks and restore peace to the kingdom. However, Snow White's charm wins over the Queen's henchman, who accidentally eats the apple and falls into a deep sleep.

In the end, Snow White realizes the error of her ways and apologizes to the dwarfs and the townspeople. She uses her charm for good, helping the dwarfs become more productive and bringing joy to the kingdom. The Evil Queen, seeing Snow White's change of heart, decides to lift the curse and the henchman wakes up. The kingdom lives happily ever after, with Snow White and the Evil Queen working together to maintain peace and order.<|im_end|>

结论

这些关于DBRX Instruct生成准确且符合上下文的响应的演示,突显了其利用先进优化技术和细粒度专家系统的复杂架构。尽管模型在某些任务中表现出一定程度的幻觉,其在理解和生成类人文本方面的总体能力是显而易见的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2084692.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenCV绘图函数(8)填充凸多边形函数fillConvexPoly()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 填充一个凸多边形。 函数 cv::fillConvexPoly 绘制一个填充的凸多边形。这个函数比 fillPoly 函数快得多。它可以填充的不仅仅是凸多边形&#…

护眼台灯减蓝光和无蓝光的有区别?眼科医生推荐的护眼台灯

自从疫情以后&#xff0c;”网课“成了一个热门的课程&#xff0c;许多家长会为了孩子的学习进行网课的报名。孩子们的眼睛处于生长期比较脆弱&#xff0c;长时间对着手机&#xff0c;电脑上课&#xff0c;电子产品会产生蓝光&#xff0c;眼睛会受到一定的伤害。护眼台灯减蓝光…

CTFHub-SSRF过关攻略(持续更新中...)

第一题&#xff0c;内网访问 一&#xff0c;打开web/ssrf/内网访问 二&#xff0c;进入页面什么都没有查看一下上一步给的参数 三&#xff0c;输入http://127.0.0.1/flag.php回车显示flag 四&#xff0c;然后复制提交&#xff08;恭喜通关&#xff09; 第二题&#xff0c;伪协…

AI智能大数据分析足球AIAutoPrediction,提高足球比赛预测准确度的新方法

本文摘要&#xff1a;一、I智能大数据分析足球的原理I智能大数据分析足球的原理是利用机器学习和大数据分析技术&#xff0c;对足球比赛的各种数据进行分析和预测。这些数据包括球队历史成绩、球员数据、场地... 一、I智能大数据分析足球的原理 I智能大数据分析足球的原理是利…

视频生成类大模型实现原理以及应用和难点

“ 视频生成属于计算机视觉领域&#xff0c;还包括图像处理等 ” 生成式大模型在文本&#xff0c;图像&#xff0c;视频等方面表现良好&#xff0c;而我们都知道文本生成大模型是基于自然语言处理技术&#xff0c;而视频生成的大模型又是怎么实现的呢&#xff1f; 今天我们就…

学习笔记之JS篇(0828)

Error Lens:报错提示插件 2. 主题&#xff08;One Dark Pro) 3. VSCode自带格式化工具代码缩进字符改为2个字符 4. 代码缩进字符改为2个字符 左右分屏&#xff08;live Server) Win 左右箭头 **学 习 ** 不能只看不动手 不管多简单的代码都要练习 随时暂停视频随时写代码 …

Win10 安装 Rabbitmq

参考文档&#xff1a;https://www.rabbitmq.com/docs/install-windows 一、安装 Erlang 语言 安装 RabbitMQ 需要该语言的支持才能安装 下载地址&#xff1a;https://erlang.org/download/otp_versions_tree.html 点击这里下载最新版本&#xff1a;27.0.1 直接默认 next 更…

Django+vue自动化测试平台(29)--测试平台集成playwright录制pytest文件执行

需求背景 一、 系统目标与功能概述 脚本管理: 系统需要能够组织和存储所有通过playwright官方插件录制的脚本。这包括脚本的上传、编辑、删除和版本控制功能。 脚本执行: 用户应该能够在后台界面上查看所有可用的脚本&#xff0c;并能够通过简单的点击操作来启动特定脚本的执…

微调方法概览

前言 大语言模型(LLM)的训练过程通常分为两大阶段&#xff1a; 阶段一&#xff1a;预训练阶段 此阶段模型是在大规模的无标签数据集上接受训练&#xff0c;目标是使模型掌握词汇的含义、句子的构造规则以及文本的基本信息和上下文。 需特别指出&#xff0c;预训练实质上是一…

16002.orin nano平台 linux gpio 学习记录

文章目录 1 查看当前系统gpio配置信息2 orin / nano gpio2.1 GPIO 映射表2.2 nano 平台对外提供的2排端口表 3 配置GPIO 电平3.1 通过指令配置普通GPIO高电平3.2 通过设备树配置普通GPIO高电平3.3 配置特定 gpio 高电平 1 查看当前系统gpio配置信息 sudo cat /sys/kernel/debu…

【日记】已经在开始幻想明年的年度计划了(498 字)

正文 看来每次都是准备迎检的时候忙很多&#xff0c;但检查来的时候反倒还好一点。 今天比昨天好上一些&#xff0c;没有那么忙了。 感觉不去跳舞的 8 月&#xff0c;运动量下降了好多&#xff0c;膝盖经常响。只要半月板没事就好…… 前几天高配速的酸痛好像彻底消失了。今晚想…

微分方程(Blanchard Differential Equations 4th)中文版Section5.1

平衡点分析 从第3章的工作中,我们能够对线性系统的解有定性和解析的理解。不幸的是,非线性系统通常不容易使用我们开发的解析和代数技术来分析,但我们可以利用线性系统的数学来理解非线性系统在其平衡点附近的行为。 Van der Pol 方程 为了说明如何分析平衡点附近解的行为…

给linux服务器添加普通用户,并且授予sudo权限(文档copy,待验证)

创建普通用户 注意需要使用 root 用户来创建 用户创建 拿 tcs-deploy 举例 创建用户 adduser tcs-deploy 设置密码 passwd tcs-deploy 把用户加入到 root 组 usermod -g root tcs-deploy 权限授权 执行 visudo 找到 root 权限行 添加权限 tcs-deploy ALL(ALL) NOPASSWD:ALL 找…

《经典图论算法》卡恩(Kahn)算法

摘要&#xff1a; 1&#xff0c;卡恩(Kahn)算法的介绍 2&#xff0c;卡恩(Kahn)算法的代码实现 1&#xff0c;卡恩(Kahn)算法的介绍 卡恩(Kahn)算法是图的拓扑排序(Topological sorting)算法&#xff0c;它是基于队列实现的&#xff0c;类似于《宽度优先搜索(BFS)》。 拓扑排序…

np.percentile函数详解

⭐️ np.percentile函数 np.percentile 是 NumPy 库中的一个函数&#xff0c;用于计算给定数据数组的指定百分位数。百分位数表示数据中有多少比例的值小于或等于某个值&#xff0c;例如&#xff0c;第25百分位数表示数据中有25%的值小于或等于这个值。 np.percentile 函数的…

精准聊片,一触即达:影视软件对话搜索融合RAG技术应用,实现垂直领域知识精准推送

精准聊片,一触即达:影视软件对话搜索融合RAG技术应用,实现垂直领域知识精准推送 1. 背景 聊片场景是对话搜索一个重要的子场景。在聊片场景中,用户主要询问影视剧集、人物或者角色相关的知识。 聊片场景和搜片场景有一些不同,在聊片场景中,用户不是为了搜索观看某个剧,…

mysql数据库数据的批量插入

一、前言 在写sql语句的时候常常会有很多疑问&#xff0c;那就是当单表的数据量很大的时候&#xff0c;查询性能怎么样&#xff0c;以及索引对数据查询的影响&#xff0c;今天用navicat批量造了很多重复数据来对mysq在数据量大的时候查询的性能的测试。 1 、使用navicat批量插…

什么是算法?一切皆算法

如果有人问我什么算法&#xff1f;我就一句话&#xff1a;算法就是对一类问题的最优求解路径。 1、计算机领域的算法概念 算法一直都是计算机领域非常重要的概念&#xff0c;具备极高的地位&#xff0c;各个公司对算法的考察也非常热衷。 我们只有在数学、计算机和人工智能领…

IEEE的官方论文模板

各位写论文时应该都会有一个苦恼&#xff0c;不知道应该怎么找论文模板&#xff0c;这里详细介绍了如何从IEEE的官网下载官方模板&#xff08;LaTex或Word&#xff09; 下载模板 首先进入IEEE的作者中心 Author Center&#xff0c;点击 Download a template 下载官方模板 其次…

开放式耳机音质好吗?五款超强单品推荐!

开放式耳机的音质体验因品牌和型号而异&#xff0c;但许多产品通过采用先进的声学技术和高规格的硬件配置&#xff0c;能够提供出色的音质。例如&#xff0c;南卡OE MIX开放式耳机搭载了Super Bass 3.0高性能跑道型音频单元和最新的蓝牙5.4芯片&#xff0c;音质表现远超同价位产…