EEMD-MPE-KPCA-BiLSTM(集合经验分解-多尺度排列熵-核主元分析-双向长短期网络)故障识别、诊断(Matlab)
目录
- EEMD-MPE-KPCA-BiLSTM(集合经验分解-多尺度排列熵-核主元分析-双向长短期网络)故障识别、诊断(Matlab)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
EEMD-MPE-KPCA-BiLSTM(集合经验模态分解-多尺度排列熵-核主元分析-双向长短期记忆网络)用于故障识别、诊断(Matlab完整源码和数据)运行环境matlab2023b
1.所用数据集为西安交通大学轴承故障数据集4个故障类别分别为
35HZCage(122条样本)35HZOuter race(123条样本)37.5HZOuter race(161条样本)40HZOuter race(114条样本)
选取每个故障的水平信号并截取前2000个信号点,即共520条样本每条样本长度为2000
2.程序流程
(1)对520条样本分别采用EEMD进行分解通过判定所有分解信号样本熵值,并重构为高中低3个频段信号
(2)对高中低信号分解进行多尺度排列熵计算并合成,最后得到每条样本的特征向量
(3)对每条样本特征向量进行kpca降维
(3)将数据导入至BILSTM进行分类/故障识别
3.对照组
eemd-pe-bilstm、eemd-mpe-bilstm
精度对比有分类散点图、混淆矩阵、精确率、召回率、调和平均数
程序设计
- 完整程序和数据资源处下载EEMD-MPE-KPCA-BiLSTM(集合经验分解-多尺度排列熵-核主元分析-双向长短期网络)故障识别、诊断(Matlab)
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% EEMD-PE-bilstm
load ('eemddata','X1','X2')
load('kpcadata','Y')
data = X1;%%生成pe数据集
%输入输出数据
input=data(:,1:end-1); %data的第一列-倒数第二列为特征指标
output=data(:,end); %data的最后面一列为标签类型
N=length(output); %全部样本数目
testNum=0.2*N; %设定测试样本数目
trainNum=N-testNum; %计算训练样本数目
%训练集、测试集
P_train = input(1:trainNum,:)';
T_train =output(1:trainNum)';
P_test =input(trainNum+1:trainNum+testNum,:)';
T_test =output(trainNum+1:trainNum+testNum)';
num_class = length(unique(data(:, end))); % 类别数(Excel最后一列放类别)
t_train = categorical(T_train)';
t_test = categorical(T_test )';
% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
% 格式转换
for i = 1 : trainNum
pp_train{i, 1} = p_train(:, i);
end
for i = 1 : testNum
pp_test{i, 1} = p_test(:, i);
end
% 创建网络
numFeatures = size(P_train, 1); % 特征维度
numResponses = num_class;
layers = [ ...
sequenceInputLayer(numFeatures) % 输入层
bilstmLayer(150, 'OutputMode', 'last') % bilstm层%%调整神经元个数
reluLayer % Relu 激活层
fullyConnectedLayer(numResponses) % 全连接层数等于分类数
softmaxLayer % 损失函数层
classificationLayer]; % 分类层
% 参数设置
checkpointPath = pwd;
options = trainingOptions('adam', ... % 优化算法Adam
'MaxEpochs', 200, ... % 最大训练次数
'GradientThreshold', 1, ... % 梯度阈值
'InitialLearnRate', 0.03, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率调整
'LearnRateDropPeriod', 200, ... % 训练700次后开始调整学习率
'LearnRateDropFactor',0.2, ... % 学习率调整因子
'ExecutionEnvironment', 'cpu',... % 训练环境
'Verbose', 0, ... % 关闭优化过程
'Plots', 'training-progress'); % 画出曲线
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502