5.仿射坐标系与二阶行列式
5.1 定义
【定义1.2】空间中一点
O
O
O与三个不共面向量
e
1
,
e
2
,
e
3
\pmb{e}_{1},\pmb{e}_{2},\pmb{e}_{3}
e1,e2,e3一起构成空间的一个仿射标架,记作
[
O
;
e
1
,
e
2
,
e
3
]
[O;\pmb{e}_{1},\pmb{e}_{2},\pmb{e}_{3}]
[O;e1,e2,e3]。称
O
O
O为它的原点,称
e
1
,
e
2
,
e
3
\pmb{e}_{1},\pmb{e}_{2},\pmb{e}_{3}
e1,e2,e3为它的坐标向量。对于空间中的任意一点
A
A
A,把向量
O
A
⃗
\vec{OA}
OA称为
A
A
A的定位向量,把向量
O
A
⃗
\vec{OA}
OA对
e
1
,
e
2
,
e
3
\pmb{e}_{1},\pmb{e}_{2},\pmb{e}_{3}
e1,e2,e3的分解系数构成的有序数组称为
A
A
A关于上述仿射标架的仿射坐标。这样得到的空间的点与三元有序数组的对应关系称为由仿射标架
[
O
;
e
1
,
e
2
,
e
3
]
[O;\pmb{e}_{1},\pmb{e}_{2},\pmb{e}_{3}]
[O;e1,e2,e3]决定的空间仿射坐标系。
在空间仿射坐标系中:
(1)向量的坐标就是标架向量的分解系数;
(2)点的坐标就是定位这个点的向量的坐标。
空间直角坐标系 ⇔ e i ⊥ e j ( i ≠ j ) , ∣ e i ∣ = 1 ( i = 1 , 2 , 3 ) \Leftrightarrow\pmb{e}_{i}\bot \pmb{e}_{j}(i\ne j),|\pmb{e}_{i}|=1(i=1,2,3) ⇔ei⊥ej(i=j),∣ei∣=1(i=1,2,3)
5.2 运算法则
设仿射坐标系中有两个向量
α
=
(
a
1
,
b
1
,
c
1
)
(
⇔
α
=
a
1
e
1
+
b
1
e
2
+
c
1
e
3
)
β
=
(
a
2
,
b
2
,
c
2
)
(
⇔
α
=
a
2
e
1
+
b
2
e
2
+
c
2
e
3
)
,
\pmb{\alpha}=(a_{1},b_{1},c_{1})(\Leftrightarrow\pmb{\alpha}=a_{1}\pmb{e}_{1}+b_{1}\pmb{e}_{2}+c_{1}\pmb{e}_{3})\\\pmb{\beta}=(a_{2},b_{2},c_{2})(\Leftrightarrow\pmb{\alpha}=a_{2}\pmb{e}_{1}+b_{2}\pmb{e}_{2}+c_{2}\pmb{e}_{3}),
α=(a1,b1,c1)(⇔α=a1e1+b1e2+c1e3)β=(a2,b2,c2)(⇔α=a2e1+b2e2+c2e3),
(1)
α
+
β
=
(
a
1
+
a
2
,
b
1
+
b
2
,
c
1
+
c
2
)
(
⇔
α
+
β
=
(
a
1
+
a
2
)
)
e
1
+
(
b
1
+
b
2
)
e
2
+
(
c
1
+
c
2
e
3
)
\pmb{\alpha}+\pmb{\beta}=(a_{1}+a_{2},b_{1}+b_{2},c_{1}+c_{2})(\Leftrightarrow\pmb{\alpha}+\pmb{\beta}=(a_{1}+a_{2}))\pmb{e}_{1}+(b_{1}+b_{2})\pmb{e}_{2}+(c_{1}+c_{2}\pmb{e}_{3})
α+β=(a1+a2,b1+b2,c1+c2)(⇔α+β=(a1+a2))e1+(b1+b2)e2+(c1+c2e3)
(2)
λ
α
=
(
λ
a
1
,
λ
b
1
,
λ
c
1
)
\lambda \pmb{\alpha}=(\lambda a_{1},\lambda b_{1},\lambda c_{1})
λα=(λa1,λb1,λc1)
(3)
α
i
=
(
x
i
,
y
i
,
z
i
)
\pmb{\alpha}_{i}=(x_{i},y_{i},z_{i})
αi=(xi,yi,zi),则
∑
i
=
1
n
λ
i
α
i
=
(
∑
i
=
1
n
λ
i
x
i
,
∑
i
=
1
n
λ
i
y
i
,
∑
i
=
1
n
λ
i
z
i
)
\sum\limits_{i=1}^{n}\lambda_{i}\pmb{\alpha}_{i}=(\sum\limits_{i=1}^{n}\lambda_{i}x_{i},\sum\limits_{i=1}^{n}\lambda_{i}y_{i},\sum\limits_{i=1}^{n}\lambda_{i}z_{i})
i=1∑nλiαi=(i=1∑nλixi,i=1∑nλiyi,i=1∑nλizi)
5.3 点的坐标
设有两个点 A = ( a 1 , a 2 , a 3 ) , B = ( b 1 , b 2 , b 3 ) A=(a_{1},a_{2},a_{3}),B=(b_{1},b_{2},b_{3}) A=(a1,a2,a3),B=(b1,b2,b3),则 A B ⃗ = O B ⃗ − O A ⃗ = ( b 1 − a 1 , b 2 − a 2 , b 3 − a 3 ) \vec{AB}=\vec{OB}-\vec{OA}=(b_{1}-a_{1},b_{2}-a_{2},b_{3}-a_{3}) AB=OB−OA=(b1−a1,b2−a2,b3−a3)
5.4 简单比
【例】已知
(
A
,
B
,
C
)
=
λ
(A,B,C)=\lambda
(A,B,C)=λ,则
C
C
C点坐标为?
【解】还是求
O
C
⃗
\vec{OC}
OC
O
C
⃗
=
(
1
−
s
)
O
A
⃗
+
s
O
B
⃗
=
1
1
+
λ
O
A
⃗
+
λ
1
+
λ
O
B
⃗
\vec{OC}=(1-s)\vec{OA}+s\vec{OB}=\frac{1}{1+\lambda}\vec{OA}+\frac{\lambda}{1+\lambda}\vec{OB}
OC=(1−s)OA+sOB=1+λ1OA+1+λλOB,
C
C
C的坐标为
O
C
⃗
=
(
a
1
+
λ
b
1
1
+
λ
,
a
2
+
λ
b
2
1
+
λ
,
a
3
+
λ
b
3
1
+
λ
)
\vec{OC}=(\frac{a_{1}+\lambda b_{1}}{1+\lambda},\frac{a_{2}+\lambda b_{2}}{1+\lambda},\frac{a_{3}+\lambda b_{3}}{1+\lambda})
OC=(1+λa1+λb1,1+λa2+λb2,1+λa3+λb3)
5.5 向量之间的位置关系判断
设仿射坐标系中有两个向量 α = ( a 1 , b 1 , c 1 ) , β = ( a 2 , b 2 , c 2 ) \pmb{\alpha}=(a_{1},b_{1},c_{1}),\pmb{\beta}=(a_{2},b_{2},c_{2}) α=(a1,b1,c1),β=(a2,b2,c2)
- α / / β ⇔ ∃ λ ∈ R \pmb{\alpha} // \pmb{\beta}\Leftrightarrow \exists \lambda\in\mathbb{R} α//β⇔∃λ∈R,使得 a 1 = λ a 2 , b 1 = λ b 2 , c 1 = λ c 2 a_{1}=\lambda a_{2},b_{1}=\lambda b_{2},c_{1}=\lambda c_{2} a1=λa2,b1=λb2,c1=λc2
5.6 行列式
对二阶方阵
(
a
1
a
2
b
1
b
2
)
\begin{pmatrix} a_{1} & a_{2}\\ b_{1} & b_{2} \end{pmatrix}
(a1b1a2b2),在直角坐标系中取向量
α
=
(
a
1
,
a
2
)
,
β
=
(
b
1
,
b
2
)
\pmb{\alpha}=(a_{1},a_{2}),\pmb{\beta}=(b_{1},b_{2})
α=(a1,a2),β=(b1,b2),定义二阶行列式
∣
a
1
a
2
b
1
b
2
∣
=
S
(
α
,
β
)
\begin{vmatrix} a_{1} & a_{2}\\ b_{1} & b_{2} \end{vmatrix}=S(\pmb{\alpha},\pmb{\beta})
a1b1a2b2
=S(α,β)
其中
S
(
α
,
β
)
S(\pmb{\alpha},\pmb{\beta})
S(α,β)是以
α
\pmb{\alpha}
α和
β
\pmb{\beta}
β为邻边的平行四边形的有向面积,
α
\pmb{\alpha}
α至
β
\pmb{\beta}
β为逆时针时取正值,顺时针时取负值。
5.7 二阶行列式的性质
- S ( α , α ) = 0 S(\pmb{\alpha},\pmb{\alpha})=0 S(α,α)=0(方阵两行相同,方阵对应的行列式为0)
- S ( α , β ) = − S ( β , α ) S(\pmb{\alpha},\pmb{\beta})=-S(\pmb{\beta},\pmb{\alpha}) S(α,β)=−S(β,α)(交换方阵的两行,方阵对应的行列式变号)
-
S
(
k
α
,
β
)
=
k
S
(
α
,
β
)
S(k\pmb{\alpha},\pmb{\beta})=kS(\pmb{\alpha},\pmb{\beta})
S(kα,β)=kS(α,β)(用一个实数去乘方阵的某一行,则方阵的行列式为该实数乘没乘这个实数的方阵的行列式)
-
S
(
α
,
β
+
γ
)
=
S
(
α
,
β
)
+
S
(
α
,
γ
)
S(\pmb{\alpha},\pmb{\beta}+\pmb{\gamma})=S(\pmb{\alpha},\pmb{\beta})+S(\pmb{\alpha},\pmb{\gamma})
S(α,β+γ)=S(α,β)+S(α,γ)(如果方阵的某一行可以拆成
β
+
γ
\pmb{\beta}+\pmb{\gamma}
β+γ,则方阵的行列式也可以拆成两个行列式的和,其中一个行列式的某行为
β
\pmb{\beta}
β,另一个行列式的对应行为
γ
\pmb{\gamma}
γ)
恰为平行四边形EOAG的面积,(相加写在第一个位置同理) - S ( α , k α + β ) = S ( α , k α ) + S ( α , β ) = k S ( α , α ) + S ( α , β ) = S ( α , β ) S(\pmb{\alpha},k\pmb{\alpha}+\pmb{\beta})=S(\pmb{\alpha},k\pmb{\alpha})+S(\pmb{\alpha},\pmb{\beta})=kS(\pmb{\alpha},\pmb{\alpha})+S(\pmb{\alpha},\pmb{\beta})=S(\pmb{\alpha},\pmb{\beta}) S(α,kα+β)=S(α,kα)+S(α,β)=kS(α,α)+S(α,β)=S(α,β)(将方阵的某行乘一个倍数加到另外一行,方阵对应的行列式不变)
-
S
(
α
,
β
)
=
∣
a
1
a
2
b
1
b
2
∣
=
a
1
b
2
−
a
2
b
1
S(\pmb{\alpha},\pmb{\beta})=\begin{vmatrix} a_{1} & a_{2}\\ b_{1} & b_{2} \end{vmatrix}=a_{1}b_{2}-a_{2}b_{1}
S(α,β)=
a1b1a2b2
=a1b2−a2b1
【证】
S ( α , β ) = ∣ a 1 a 2 b 1 b 2 ∣ = ∣ a 1 + 0 0 + a 2 b 1 b 2 ∣ = ∣ a 1 0 b 1 b 2 ∣ + ∣ 0 a 2 b 1 b 2 ∣ = ∣ a 1 0 b 1 + 0 0 + b 2 ∣ + ∣ 0 a 2 b 1 + 0 0 + b 2 ∣ = ∣ a 1 0 b 1 0 ∣ + ∣ a 1 0 0 b 2 ∣ + ∣ 0 a 2 b 1 0 ∣ + ∣ 0 a 2 0 b 2 ∣ S(\pmb{\alpha},\pmb{\beta})=\begin{vmatrix} a_{1} & a_{2}\\ b_{1} & b_{2} \end{vmatrix}=\begin{vmatrix} a_{1}+0 & 0+a_{2}\\ b_{1} & b_{2} \end{vmatrix}=\begin{vmatrix} a_{1} & 0\\ b_{1} & b_{2} \end{vmatrix}+\begin{vmatrix} 0 & a_{2}\\ b_{1} & b_{2} \end{vmatrix}=\begin{vmatrix} a_{1} & 0\\ b_{1}+0 & 0+b_{2} \end{vmatrix}+\begin{vmatrix} 0 & a_{2}\\ b_{1}+0 & 0+b_{2} \end{vmatrix}=\begin{vmatrix} a_{1} & 0\\ b_{1} & 0 \end{vmatrix}+\begin{vmatrix} a_{1} & 0\\ 0 & b_{2} \end{vmatrix}+\begin{vmatrix} 0 & a_{2}\\ b_{1} & 0 \end{vmatrix}+\begin{vmatrix} 0 & a_{2}\\ 0 & b_{2} \end{vmatrix} S(α,β)= a1b1a2b2 = a1+0b10+a2b2 = a1b10b2 + 0b1a2b2 = a1b1+000+b2 + 0b1+0a20+b2 = a1b100 + a100b2 + 0b1a20 + 00a2b2
由于 ( a 1 , 0 ) / / ( b 1 , 0 ) (a_{1},0)//(b_{1},0) (a1,0)//(b1,0)则 ∣ a 1 0 b 1 0 ∣ = 0 \begin{vmatrix} a_{1} & 0\\ b_{1} & 0 \end{vmatrix}=0 a1b100 =0,同理可知 ∣ 0 a 2 0 b 2 ∣ = 0 \begin{vmatrix} 0 & a_{2}\\ 0 & b_{2} \end{vmatrix}=0 00a2b2 =0
所以 S ( α , β ) = ∣ a 1 a 2 b 1 b 2 ∣ = ∣ a 1 0 b 1 0 ∣ + ∣ a 1 0 0 b 2 ∣ + ∣ 0 a 2 b 1 0 ∣ + ∣ 0 a 2 0 b 2 ∣ = 0 + ∣ a 1 0 0 b 2 ∣ + ∣ 0 a 2 b 1 0 ∣ + 0 = ∣ a 1 0 0 b 2 ∣ + ∣ 0 a 2 b 1 0 ∣ = a 1 b 2 ∣ 1 0 0 1 ∣ + a 2 b 1 ∣ 0 1 1 0 ∣ = a 1 b 2 ∣ 1 0 0 1 ∣ − a 2 b 1 ∣ 1 0 0 1 ∣ S(\pmb{\alpha},\pmb{\beta})=\begin{vmatrix} a_{1} & a_{2}\\ b_{1} & b_{2} \end{vmatrix}=\begin{vmatrix} a_{1} & 0\\ b_{1} & 0 \end{vmatrix}+\begin{vmatrix} a_{1} & 0\\ 0 & b_{2} \end{vmatrix}+\begin{vmatrix} 0 & a_{2}\\ b_{1} & 0 \end{vmatrix}+\begin{vmatrix} 0 & a_{2}\\ 0 & b_{2} \end{vmatrix}=0+\begin{vmatrix} a_{1} & 0\\ 0 & b_{2} \end{vmatrix}+\begin{vmatrix} 0 & a_{2}\\ b_{1} & 0 \end{vmatrix}+0=\begin{vmatrix} a_{1} & 0\\ 0 & b_{2} \end{vmatrix}+\begin{vmatrix} 0 & a_{2}\\ b_{1} & 0 \end{vmatrix}=a_{1}b_{2}\begin{vmatrix} 1 & 0\\ 0 & 1 \end{vmatrix}+a_{2}b_{1}\begin{vmatrix} 0 & 1\\ 1 & 0 \end{vmatrix}=a_{1}b_{2}\begin{vmatrix} 1 & 0\\ 0 & 1 \end{vmatrix}-a_{2}b_{1}\begin{vmatrix} 1 & 0\\ 0 & 1 \end{vmatrix} S(α,β)= a1b1a2b2 = a1b100 + a100b2 + 0b1a20 + 00a2b2 =0+ a100b2 + 0b1a20 +0= a100b2 + 0b1a20 =a1b2 1001 +a2b1 0110 =a1b2 1001 −a2b1 1001
∣ 1 0 0 1 ∣ \begin{vmatrix} 1 & 0\\ 0 & 1 \end{vmatrix} 1001 是以 ( 0 , 1 ) (0,1) (0,1)和 ( 1 , 0 ) (1,0) (1,0)向量为边的平行四边形的有向面积,这两个向量刚好垂直,长度相等,则计算的是边长为1的正方形面积,即 ∣ 1 0 0 1 ∣ = 1 \begin{vmatrix} 1 & 0\\ 0 & 1 \end{vmatrix}=1 1001 =1
所以 S ( α , β ) = ∣ a 1 a 2 b 1 b 2 ∣ = a 1 b 2 − a 2 b 1 S(\pmb{\alpha},\pmb{\beta})=\begin{vmatrix} a_{1} & a_{2}\\ b_{1} & b_{2} \end{vmatrix}=a_{1}b_{2}-a_{2}b_{1} S(α,β)= a1b1a2b2 =a1b2−a2b1 - ∣ a 1 a 2 b 1 b 2 ∣ = ∣ a 1 b 1 a 2 b 2 ∣ \begin{vmatrix} a_{1} & a_{2}\\ b_{1} & b_{2} \end{vmatrix}=\begin{vmatrix} a_{1} & b_{1}\\ a_{2} & b_{2} \end{vmatrix} a1b1a2b2 = a1a2b1b2 (方阵的转置矩阵的行列式不变,矩阵中行和列所处的关系是一致的,可以以行为向量,可以以列为向量)