后端开发刷题 | 合并k个已排序的链表

news2025/1/15 17:19:08

描述

合并 k 个升序的链表并将结果作为一个升序的链表返回其头节点。

数据范围:节点总数 0≤n≤5000,每个节点的val满足 ∣val∣<=1000

要求:时间复杂度 O(nlogn)

示例1

输入:

[{1,2,3},{4,5,6,7}]

返回值:

{1,2,3,4,5,6,7}

示例2

输入:

[{1,2},{1,4,5},{6}]

返回值:

{1,1,2,4,5,6}

思路分析:

归并排序思想

知识点1:双指针

双指针指的是在遍历对象的过程中,不是普通的使用单个指针进行访问,而是使用两个指针(特殊情况甚至可以多个),两个指针或是同方向访问两个链表、或是同方向访问一个链表(快慢指针)、或是相反方向扫描(对撞指针),从而达到我们需要的目的。

知识点2:分治

分治即“分而治之”,“分”指的是将一个大而复杂的问题划分成多个性质相同但是规模更小的子问题,子问题继续按照这样划分,直到问题可以被轻易解决;“治”指的是将子问题单独进行处理。经过分治后的子问题,需要将解进行合并才能得到原问题的解,因此整个分治过程经常用递归来实现。

对于这k个链表,就相当于上述合并阶段的k个子问题,需要划分为链表数量更少的子问题,直到每一组合并时是两两合并,然后继续往上合并,这个过程基于递归:

  • 终止条件: 划分的时候直到左右区间相等或左边大于右边。
  • 返回值: 每级返回已经合并好的子问题链表。
  • 本级任务: 对半划分,将划分后的子问题合并成新的链表。

具体做法:

  • step 1:从链表数组的首和尾开始,每次划分从中间开始划分,划分成两半,得到左边n/2个链表和右边n/2个链表。
  • step 2:继续不断递归划分,直到每部分链表数为1.
  • step 3:将划分好的相邻两部分链表,按照两个有序链表合并的方式合并,合并好的两部分继续往上合并,直到最终合并成一个链表。

图示:

alt

代码:

import java.util.*;


public class Solution {
    //两个链表合并函数
    public ListNode merge(ListNode list1,ListNode list2){
        //一个已经为空了,直接返回另一个
        if(list1==null){
            return list2;
        }
        if(list2==null){
            return list1;
        }
        //加一个表头
        ListNode head=new ListNode(0);
        ListNode cur=head;
        //两个链表都要不为空
        while(list1!=null&&list2!=null){
            //取较小值的节点
            if(list1.val>list2.val){
                cur.next=list2;
                //只移动取值的指针
                list2=list2.next;
            }else{
                cur.next=list1;
                //只移动取值的指针
                list1=list1.next;
            }
            //指针后移,为下一次循环做准备
            cur=cur.next;
        }
        //哪个链表还有剩,直接连在后面
        if(list1!=null){
            cur.next=list1;
        }

        if(list2!=null){
            cur.next=list2;
        }
        //返回值去掉表头
        return head.next;

    }
    //划分合并区间函数
    public ListNode divideMerge(ArrayList<ListNode> lists,int left,int right){
        if(left>right){
            return null;
            //中间一个的情况
        }else if(left==right){
            return lists.get(left);
        }
        //从中间分成两段,再将合并好的两段合并
        int mid=(left+right)/2;
        return merge(divideMerge(lists,left,mid),divideMerge(lists,mid+1,right));
    }
    /**
     * 
     * @param lists ListNode类ArrayList 
     * @return ListNode类
     */
    public ListNode mergeKLists (ArrayList<ListNode> lists) {
        //k个链表归并排序
        return divideMerge(lists,0,lists.size()-1);
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2062744.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电机foc学习渠道已开放,欢迎各位加入

凌鸥学园旨在为电机控制爱好者提供学习交流成长平台&#xff0c;缓解电控行业人才缺口扩大趋势&#xff0c;共同打造繁荣行业生态。我们将全面整合LKS MCU相关资料&#xff0c;包括开发环境、应用笔记、教学视频、学习指导等&#xff0c;并设有专业课程。 课程图&#xff1a; 除…

程序统计访问用户与百度统计访问用户相差很大-User-Agent访问列表

一、程序统计访问用户与百度统计访问用户相差很大-User-Agent访问列表 1. 站里某天的User-Agent数据日志情况 本站里某天的User-Agent数据如下列表&#xff0c;占用量最大的就是前四项&#xff0c;后面的各项数量都很少可忽略&#xff0c;因网站的程序统计访问用户数和百度统计…

Cobalt Strike 4.8 用户指南-第二节-用户界面

2.1、概述 Cobalt Strike用户界面分为两部分。界面顶部显示会话或目标的可视化。界面底部显示与你交互的每个 Cobalt Strike 功能或会话的选项卡。可以单击这两个部分之间的区域并根据自己的喜好调整它们的大小。 # 2.2、工具栏 顶部的工具栏提供对常见 Cobalt Strike功能的快…

车规级MCU「换道」竞赛

汽车芯片&#xff0c;尤其是MCU市场正在进入拐点期。 本周&#xff0c;总部位于荷兰的汽车芯片制造商—恩智浦&#xff08;NXP&#xff09;半导体总裁兼首席执行官Kurt Sievers在公司第二季度财报电话会议上告诉投资者&#xff0c;由于汽车需求停滞不前&#xff0c;该公司正在努…

一元四次方程求解-【附MATLAB代码】

目录 前言 求解方法 MATLAB验证 附&#xff1a;一元四次方程的故事 前言 最近在研究机器人的干涉&#xff08;碰撞&#xff09;检测&#xff0c;遇到了一个问题&#xff0c;就是在求椭圆到原点的最短距离时&#xff0c;构建的方程是一个一元四次方程。无论是高中的初等数学…

pip出问题了,重装,获取python3.7 get-pip.py

下载脚本&#xff0c;对应版本 curl https://bootstrap.pypa.io/pip/3.7/get-pip.py -o get-pip.py https://bootstrap.pypa.io/pip/3.7/get-pip.py 安装 python get-pip.py windows下默认没有cur.exe 下载地址&#xff1a;通过百度网盘分享的文件&#xff1a;curl_windows…

论文翻译:Universal and Transferable Adversarial Attacks on Aligned Language Models

Universal and Transferable Adversarial Attacks on Aligned Language Models https://arxiv.org/pdf/2307.15043v2 通用且可转移的对抗性攻击对齐语言模型 文章目录 通用且可转移的对抗性攻击对齐语言模型摘要1 引言2 一个针对LLMs的通用攻击2.1 产生肯定回应2.2 贪婪坐标梯…

vue3 安装element-plus进行一些简单的测试

1、安装element-plus 官网地址&#xff1a;https://element-plus.org/zh-CN/guide/installation.html 2、安装方法&#xff1a; # 选择一个你喜欢的包管理器# NPM npm install element-plus --save# Yarn yarn add element-plus# pnpm pnpm install element-plus 这里我选择…

嵌入式AI快速入门课程-K510篇 (第二篇 Ubuntu的基础操作)

第二篇 Ubuntu的基础操作 文章目录 第二篇 Ubuntu的基础操作1. 安装 VMware 运行 Ubuntu1.1 安装 VMware 1.2 使用VMware打开Ubuntu1.2.1 下载、解压Ubuntu映像文件1.2.1 在BIOS上启动虚拟化(virtualization)1.1.1 使用VMware运行Ubuntu 2.第1章 Ubuntu操作入门1.1 Ubuntu下打开…

Vmware虚拟机接入物理机路由器网络

网络适配器增加至两个&#xff0c;一个选NAT, 另一个选host-only,再加一个桥接&#xff0c;不勾选使用物理网卡&#xff0c;然后重启即可&#xff01;

数据结构--图(Graph)

定义 图&#xff08;Graph&#xff09;是由顶点的有穷非空集合和顶点之间边的集合组成的一种非线性表结构&#xff0c;通常表示为&#xff1a;G(V,E)&#xff0c;其中&#xff0c;G表示一个图&#xff0c;V是图G中顶点的集合&#xff0c;E是图G中边的集合。 顶点&#xff08;…

three.js实现 加载3dtiles ,瓦片 ,倾斜摄影,功能

预览&#xff1a;https://z2586300277.github.io/three-cesium-examples/#/codeMirror?navigationThreeJS&classifyexpand&idloadTiles 部署站点预览&#xff1a;http://threehub.cn/ 开源地址&#xff1a;https://z2586300277.github.io/three-cesium-examples/#/e…

mp3和mp4的区别是什么?怎么把mp3转成mp4?(全)

在生活中我们或多或少会听到“mp3”和“mp4”&#xff0c;那么什么是mp3和mp4呢&#xff1f;mp3和mp4的区别是什么&#xff1f;mp3是一种音频压缩技术&#xff0c;旨在在不显著牺牲音质的前提下减小音频文件的体积&#xff0c;使其适用于音乐和其他音频内容的存储与传输。相比之…

压测时,并发量过高时,响应时间出现尖刺

&#x1f3c6;本文收录于《CSDN问答解惑-专业版》专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收…

C++STL~~vector

文章目录 一、vector的概念二、vector的使用三、vector 迭代器失效问题四、vector的练习五、总结 一、vector的概念 vector是一个功能强大的模板类&#xff0c;用于表示动态数组。 动态大小调整&#xff1a; std::vector可以根据需要自动增长或收缩其存储的元素数量。这意味着…

tyut-数据库期末复习要点

第一章 数据库系统&#xff08;DBS&#xff09;是由数据库&#xff08;DB&#xff09;&#xff0c;数据库&#xff08;DBMS) &#xff0c;应用程序和数据库管理员 (DBA)组成的存储&#xff0c;管理&#xff0c;处理和维护数据的系统 数据模型&#xff1a;比较真实的模拟现实世…

如和写一个库,并发布,我的colorfontcolor产生使用

闲来无事&#xff0c;写了一个npm包 1.1.2版本以后可以使用&#xff0c;前面的版本都是bug colorfontcolor 具体使用具体实现出现的细节出现的问题 写包时出现的问题用的相关库问题 具体使用 npm i colorontcolor //es6环境,vue组件中使用 <template><div><h1 …

交通流量预测,模型优化

交通流量预测&#xff0c;时空预测 模型优化&#xff0c;网络搭建 时间序列预测、车辆轨迹预测 行人轨迹预测建模 深度学习模型为rnn,lstm,gru,s2s,transformer,diffusion等各大顶会sota方法 个人在做&#xff0c;可加急 保质保量&#xff0c;售后无忧

06、Redis实战:优惠券秒杀、分布式锁Redission、可重入、重试、看门狗、MutiLock

5、分布式锁-redission 5.1 分布式锁-redission功能介绍 基于setnx实现的分布式锁存在下面的问题&#xff1a; 重入问题 重入问题是指获取锁的线程&#xff0c;可以再次进入到相同的锁的代码块中&#xff0c;可重入锁的意义在于防止死锁&#xff0c;例如在HashTable这样的代…

【赵渝强老师】执行MySQL的冷备份与冷恢复

冷备份是指发生在数据库已经正常关闭的情况下进行的备份。由于此时数据库已经关闭&#xff0c;通过冷备份可以将数据库的关键性文件拷贝到另外存储位置。冷备份因为只是拷贝文件&#xff0c;因此备份的速度非常快。在执行恢复时&#xff0c;只需将文件再拷贝回去就可以很容易恢…