文章目录
- 和为K的子数组
- 和可被k整除的子数组
- 连续数组
- 矩阵区域和
一定要看懂算法原理之后写代码,博主大概率因注意力不够,看了好多遍,才看懂原理细节。
切记,不彻底懂原理,千万别看代码
和为K的子数组
class Solution {
public:
int subarraySum(vector<int>& nums, int k) {
int ans = 0;
int n = nums.size();
unordered_map<int, int> hash;
int sum = 0;
hash[sum]++;//整个前缀和为K
for(int i = 0; i < n; ++i){
sum += nums[i];
//ans += hash[sum - k];
if(hash.count(sum - k)) ans += hash[sum - k]; // 小优化
hash[sum]++;
}
return ans;
}
};
和可被k整除的子数组
class Solution {
public:
int subarraysDivByK(vector<int>& nums, int k) {
int ans = 0;
int sum = 0;
unordered_map<int, int> hash;
hash[sum]++;
for (auto& e : nums) {
sum += e;
int r = (sum % k + k) % k;
if (hash.count(r))
ans += hash[r];
hash[r]++;
}
return ans;
}
};
连续数组
class Solution {
public:
int findMaxLength(vector<int>& nums) {
unordered_map<int, int> hash;
int sum = 0;
hash[sum] = -1;
int ans = 0;
for (int i = 0; i < nums.size(); ++i) {
sum += nums[i] == 0 ? -1 : 1;
if (hash.count(sum))
ans = max(ans, i - hash[sum]);
else
hash[sum] = i;
}
return ans;
}
};
矩阵区域和
class Solution {
public:
vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {
int m = mat.size(), n = mat[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
vector<vector<int>> arr(m, vector<int>(n));
for (int i = 1; i < m + 1; ++i) {
for (int j = 1; j < n + 1; ++j) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] +
mat[i - 1][j - 1];
}
}
for (int i = 1; i < m + 1; ++i) {
for (int j = 1; j < n + 1; ++j) {
int up = max(i - k - 1, 0), down = min(m, i + k);
int left = max(j - k - 1, 0), right = min(n, j + k);
arr[i - 1][j - 1] = dp[down][right] - dp[up][right] -
dp[down][left] +
dp[up][left];
}
}
return arr;
}
};