前期准备参考: 深入理解计算机系统 CSAPP 第四章 Y86-64模拟器 安装与使用-CSDN博客
writeup上写了要求,这里就不赘述了.
Part A:
sum.ys:
# Execution begins at address 0
.pos 0
irmovq stack, %rsp # Set up stack pointer
call main # Execute main program
halt # Terminate program
# Sample linked list
.align 8
ele1:
.quad 0x00a
.quad ele2
ele2:
.quad 0x0b0
.quad ele3
ele3:
.quad 0xc00
.quad 0
main: irmovq ele1,%rdi
call sum # sum(ele1)
ret
# long sum(long *start)
# start in %rdi
sum: xorq %rax,%rax # sum = 0
andq %rdi,%rdi # Set CC
jmp test # Goto test
loop: mrmovq (%rdi),%r10 # Get *start
irmovq $8,%r8
addq %r10,%rax # Add to sum
addq %r8,%rdi # start++
mrmovq (%rdi),%rdi # *start
andq %rdi,%rdi # Set CC
test: jne loop # Stop when 0
ret # Return
# Stack starts here and grows to lower addresses
.pos 0x200
stack:
addq %r8,%rdi 是下一个元素的地址,不是值.
rsum.ys:
# Execution begins at address 0
.pos 0
irmovq stack, %rsp # Set up stack pointer
call main # Execute main program
halt # Terminate program
# Sample linked list
.align 8
ele1:
.quad 0x00a
.quad ele2
ele2:
.quad 0x0b0
.quad ele3
ele3:
.quad 0xc00
.quad 0
main: irmovq ele1,%rdi
xorq %rax,%rax # sum = 0
call rsum # rsum(rsum)
ret
# long rsum(long *start)
# start in %rdi
rsum: andq %rdi,%rdi # Set CC
je return # Stop when 0
mrmovq (%rdi),%rbx # Get *start
mrmovq 8(%rdi),%rdi # *start
pushq %rbx
call rsum
popq %rbx
addq %rbx,%rax # Add to sum
return: ret # Return
# Stack starts here and grows to lower addresses
.pos 0x200
stack:
copy.ys:
# Execution begins at address 0
.pos 0
irmovq stack, %rsp # Set up stack pointer
call main # Execute main program
halt # Terminate program
.align 8
# Source block
src:
.quad 0x00a
.quad 0x0b0
.quad 0xc00
# Destination block
dest:
.quad 0x111
.quad 0x222
.quad 0x333
main: irmovq src,%rdi
irmovq dest,%rsi
irmovq $3,%rdx
call copy # copy(src,dest,0)
ret
# long copy(long *src,long *dest,long len)
# src in %rdi ,dest in %rsi,len in %rdx
copy: xorq %rax,%rax # result = 0
loop: andq %rdx,%rdx
mrmovq (%rdi),%rcx
rmmovq %rcx,(%rsi)
irmovq $1,%r10
irmovq $8,%r8
xorq %rcx,%rax
addq %r8,%rdi
addq %r8,%rsi
subq %r10,%rdx
jg loop # >0
return: ret # Return
# Stack starts here and grows to lower addresses
.pos 0x200
stack:
Part B:
因为前面的家庭作业和练习题已经做过这个,这里不在赘述了.
参考,图4-18,在不同的阶段需要用哪写寄存器,修改哪些逻辑,添加上 ,IIADDQ 即可.
#/* $begin seq-all-hcl */
####################################################################
# HCL Description of Control for Single Cycle Y86-64 Processor SEQ #
# Copyright (C) Randal E. Bryant, David R. O'Hallaron, 2010 #
####################################################################
## Your task is to implement the iaddq instruction
## The file contains a declaration of the icodes
## for iaddq (IIADDQ)
## Your job is to add the rest of the logic to make it work
####################################################################
# C Include's. Don't alter these #
####################################################################
quote '#include <stdio.h>'
quote '#include "isa.h"'
quote '#include "sim.h"'
quote 'int sim_main(int argc, char *argv[]);'
quote 'word_t gen_pc(){return 0;}'
quote 'int main(int argc, char *argv[])'
quote ' {plusmode=0;return sim_main(argc,argv);}'
####################################################################
# Declarations. Do not change/remove/delete any of these #
####################################################################
##### Symbolic representation of Y86-64 Instruction Codes #############
wordsig INOP 'I_NOP'
wordsig IHALT 'I_HALT'
wordsig IRRMOVQ 'I_RRMOVQ'
wordsig IIRMOVQ 'I_IRMOVQ'
wordsig IRMMOVQ 'I_RMMOVQ'
wordsig IMRMOVQ 'I_MRMOVQ'
wordsig IOPQ 'I_ALU'
wordsig IJXX 'I_JMP'
wordsig ICALL 'I_CALL'
wordsig IRET 'I_RET'
wordsig IPUSHQ 'I_PUSHQ'
wordsig IPOPQ 'I_POPQ'
# Instruction code for iaddq instruction
wordsig IIADDQ 'I_IADDQ'
##### Symbolic represenations of Y86-64 function codes #####
wordsig FNONE 'F_NONE' # Default function code
##### Symbolic representation of Y86-64 Registers referenced explicitly #####
wordsig RRSP 'REG_RSP' # Stack Pointer
wordsig RNONE 'REG_NONE' # Special value indicating "no register"
##### ALU Functions referenced explicitly #####
wordsig ALUADD 'A_ADD' # ALU should add its arguments
##### Possible instruction status values #####
wordsig SAOK 'STAT_AOK' # Normal execution
wordsig SADR 'STAT_ADR' # Invalid memory address
wordsig SINS 'STAT_INS' # Invalid instruction
wordsig SHLT 'STAT_HLT' # Halt instruction encountered
##### Signals that can be referenced by control logic ####################
##### Fetch stage inputs #####
wordsig pc 'pc' # Program counter
##### Fetch stage computations #####
wordsig imem_icode 'imem_icode' # icode field from instruction memory
wordsig imem_ifun 'imem_ifun' # ifun field from instruction memory
wordsig icode 'icode' # Instruction control code
wordsig ifun 'ifun' # Instruction function
wordsig rA 'ra' # rA field from instruction
wordsig rB 'rb' # rB field from instruction
wordsig valC 'valc' # Constant from instruction
wordsig valP 'valp' # Address of following instruction
boolsig imem_error 'imem_error' # Error signal from instruction memory
boolsig instr_valid 'instr_valid' # Is fetched instruction valid?
##### Decode stage computations #####
wordsig valA 'vala' # Value from register A port
wordsig valB 'valb' # Value from register B port
##### Execute stage computations #####
wordsig valE 'vale' # Value computed by ALU
boolsig Cnd 'cond' # Branch test
##### Memory stage computations #####
wordsig valM 'valm' # Value read from memory
boolsig dmem_error 'dmem_error' # Error signal from data memory
####################################################################
# Control Signal Definitions. #
####################################################################
################ Fetch Stage ###################################
# Determine instruction code
word icode = [
imem_error: INOP;
1: imem_icode; # Default: get from instruction memory
];
# Determine instruction function
word ifun = [
imem_error: FNONE;
1: imem_ifun; # Default: get from instruction memory
];
bool instr_valid = icode in
{ INOP, IHALT, IRRMOVQ, IIRMOVQ, IRMMOVQ, IMRMOVQ,
IOPQ, IJXX, ICALL, IRET, IPUSHQ, IPOPQ, IIADDQ };#changed
# Does fetched instruction require a regid byte?
bool need_regids =
icode in { IRRMOVQ, IOPQ, IPUSHQ, IPOPQ,
IIRMOVQ, IRMMOVQ, IMRMOVQ , IIADDQ};#changed
# Does fetched instruction require a constant word?
bool need_valC =
icode in { IIRMOVQ, IRMMOVQ, IMRMOVQ, IJXX, ICALL, IIADDQ };#changed
################ Decode Stage ###################################
## What register should be used as the A source?
word srcA = [
icode in { IRRMOVQ, IRMMOVQ, IOPQ, IPUSHQ } : rA;
icode in { IPOPQ, IRET } : RRSP;
1 : RNONE; # Don't need register
];
## What register should be used as the B source?
word srcB = [
icode in { IOPQ, IRMMOVQ, IMRMOVQ , IIADDQ } : rB;#changed
icode in { IPUSHQ, IPOPQ, ICALL, IRET } : RRSP;
1 : RNONE; # Don't need register
];
## What register should be used as the E destination?
word dstE = [
icode in { IRRMOVQ } && Cnd : rB;
icode in { IIRMOVQ, IOPQ, IIADDQ} : rB;#changed
icode in { IPUSHQ, IPOPQ, ICALL, IRET } : RRSP;
1 : RNONE; # Don't write any register
];
## What register should be used as the M destination?
word dstM = [
icode in { IMRMOVQ, IPOPQ } : rA;
1 : RNONE; # Don't write any register
];
################ Execute Stage ###################################
## Select input A to ALU
word aluA = [
icode in { IRRMOVQ, IOPQ } : valA;
icode in { IIRMOVQ, IRMMOVQ, IMRMOVQ, IIADDQ } : valC;#changed
icode in { ICALL, IPUSHQ } : -8;
icode in { IRET, IPOPQ } : 8;
# Other instructions don't need ALU
];
## Select input B to ALU
word aluB = [
icode in { IRMMOVQ, IMRMOVQ, IOPQ, ICALL,
IPUSHQ, IRET, IPOPQ, IIADDQ } : valB;#changed
icode in { IRRMOVQ, IIRMOVQ } : 0;
# Other instructions don't need ALU
];
## Set the ALU function
word alufun = [
icode == IOPQ : ifun;
1 : ALUADD;
];
## Should the condition codes be updated?
bool set_cc = icode in { IOPQ, IIADDQ };#changed
################ Memory Stage ###################################
## Set read control signal
bool mem_read = icode in { IMRMOVQ, IPOPQ, IRET };
## Set write control signal
bool mem_write = icode in { IRMMOVQ, IPUSHQ, ICALL };
## Select memory address
word mem_addr = [
icode in { IRMMOVQ, IPUSHQ, ICALL, IMRMOVQ } : valE;
icode in { IPOPQ, IRET } : valA;
# Other instructions don't need address
];
## Select memory input data
word mem_data = [
# Value from register
icode in { IRMMOVQ, IPUSHQ } : valA;
# Return PC
icode == ICALL : valP;
# Default: Don't write anything
];
## Determine instruction status
word Stat = [
imem_error || dmem_error : SADR;
!instr_valid: SINS;
icode == IHALT : SHLT;
1 : SAOK;
];
################ Program Counter Update ############################
## What address should instruction be fetched at
word new_pc = [
# Call. Use instruction constant
icode == ICALL : valC;
# Taken branch. Use instruction constant
icode == IJXX && Cnd : valC;
# Completion of RET instruction. Use value from stack
icode == IRET : valM;
# Default: Use incremented PC
1 : valP;
];
#/* $end seq-all-hcl */
sim文件夹中右键启动终端,重新生成版本为full的ssim版本:
make clean;make VERSION=full
sim/seq文件夹中右键启动终端,运行单个程序测试:
./ssim -t ../y86-code/asumi.yo
单步调试命令:
./ssim -g ../y86-code/asumi.yo
sim/ptest文件夹中右键启动终端,运行所有测试:全部通过.
make SIM=../seq/ssim TFLAGS=-i