若该文为原创文章,转载请注明出处
本文章博客地址:https://hpzwl.blog.csdn.net/article/details/141334834
长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中…
Qt开发专栏:项目实战(点击传送门)
需求
1.打开摄像头,可设置帧率、分辨率(可设置);
2.可打开usb、rtsp和本地文件(直接输入地址自动判断);
3.opencv摄像头操作子线程处理;
4.支持设置棋盘格的行列角点数;
5.支持标定过程可控制;
6.采集标定图、可对标定图进行查看、删除;
7.可对已有的标定图查看评价像素误差率;
8.标定完成后,可以追加标定,继续开始基于原来的标定采集图继续标定;
9.支持定制配置文件的导出和导出(测试运行包不对外开放该功能);
相关博客
《OpenCV开发笔记(〇):使用mingw530_32编译openCV3.4.1源码,搭建Qt5.9.3的openCV开发环境》
《OpenCV开发笔记(三):OpenCV图像的概念和基本操作》
《OpenCV开发笔记(四):OpenCV图片和视频数据的读取与存储》
《OpenCV开发笔记(五):OpenCV读取与操作摄像头》
《OpenCV开发笔记(六):OpenCV基础数据结构、颜色转换函数和颜色空间》
《OpenCV开发笔记(七十六):相机标定(一):识别棋盘并绘制角点》
《OpenCV开发笔记(七十七):相机标定(二):通过棋盘标定计算相机内参矩阵矫正畸变摄像头图像》
Demo:calibrateTool_v1.3.0 windows运行包
广角摄像头标定过程
鱼眼摄像头标定过程
动态标定过程:查看、删除和评价
CSDN粉丝0积分下载:https://download.csdn.net/download/qq21497936/89652658
QQ群:博客首页扫码进入QQ技术群,点击“文件”搜索“calibrateTool”,群内与博文同步更新)
模块化部署
关键源码
CalibrateManager.h
#ifndef CALIBRATEMANAGER_H
#define CALIBRATEMANAGER_H
// opencv
#include "opencv/highgui.h"
#include "opencv/cxcore.h"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/opencv.hpp"
#include "opencv2/xphoto.hpp"
#include "opencv2/dnn/dnn.hpp"
// opencv_contrib
#include <opencv2/xphoto.hpp>
#include <opencv2/ximgproc.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/xfeatures2d/nonfree.hpp>
#include "cvui.h"
#include "calibrateCommon.h"
#include <QImage>
#include <QTimer>
class CalibrateManager: public QObject
{
Q_OBJECT
public:
explicit CalibrateManager(QObject *parent = 0);
~CalibrateManager();
public slots:
void testOpencvEnv(); // 测试环境
public:
double getBrightness() const; // 亮度
double getContrast() const; // 对比度
double getSaturation() const; // 饱和度
double getHue() const; // 色调
double getGain() const; // 增益
double getExposure() const; // 曝光度
bool getShowProperty() const; // 显示属性
int getCalibrateRegionX() const; // 区域x
int getCalibrateRegionY() const; // 区域y
int getCalibrateRegionWidth() const; // 区域width
int getCalibrateRegionHeight() const; // 区域height
int getChessboardColCornerCount() const;// 棋盘行角点数量
int getChessboardRowCornerCount() const;// 棋盘列角点数量
QString getSerialize() const; // 获取序列化参数
public:
void setBrightness (double value); // 亮度
void setContrast (double value); // 对比度
void setSaturation (double value); // 饱和度
void setHue (double value); // 色调
void setGain (double value); // 增益
void setExposure (double value); // 曝光度
void setShowProperty(bool value); // 显示属性
void setCalibrateRegionX(int x); // 区域x
void setCalibrateRegionY(int y); // 区域y
void setCalibrateRegionWidth(int width); // 区域width
void setCalibrateRegionHeight(int height); // 区域height
void setChessboardColCornerCount(int count);// 棋盘行角点数量
void setChessboardRowCornerCount(int count);// 棋盘列角点数量
bool setSerialize(QString str); // 获取序列化参数
signals:
void signal_opened(bool result); // 打开摄像头信号
void signal_closed(); // 关闭摄像头信号
void signal_captureOneFrame(cv::Mat mat); // 接收图像后抛出信号
void signal_captureOneFrame(QImage image); // 接收图像后抛出信号
void signal_captureOneResultFrame(cv::Mat mat); // 接收图像后抛出信号
void signal_captureOneResultFrame(QImage image); // 接收图像后抛出信号
void signal_startedCalibrate(bool result); // 开始标定结果
void signal_regionChanged(int x, int y, int width, int height);
void signal_fpsChanged(int fps); // 帧率
void signal_stopedCalibrate(); // 结束标定结果(这是强制中断,不是标定完成)
void signal_finishedCalibrate(); // 标定完成
void signal_cameraInfo(CameraInfo cameraInfo); // 更新截图相机信息
public slots:
void slot_startCapture(int usb, int width = 0, int height = 0, int fps = 0);
// 打开摄像头, 0...
void slot_startCapture(QString url, int width = 0, int height = 0, int fps = 0);
// 打开摄像头, 网络摄像头地址
void slot_stopCapture(); // 当正在采集中时(>>时),关闭摄像头会导致程序崩溃,所以采集与停止放一个线程中(消息循环)
void slot_startCalibrate(); // 开始标定
void slot_addCalibrate(); // 继续标定
void slot_snapshot(); // 快照
void slot_deleteSnapshot(int index); // 删除快照
void slot_stopCalibrate(); // 停止标定
void slot_finishCalibrate(); // 完成标定
public slots:
void slot_start(); // 开启线程
void slot_stop(); // 关闭线程
protected slots:
void slot_captrueFrame(); // 消息循环获取图像
protected:
void initControl();
void updateCalibrateResult(); // 更新标定结果
void calculateCalibrateErrors(); // 计算误差
protected:
bool findChessboard(int rowCornerCount, int colCornerCount, cv::Mat &mat, std::vector<cv::Point2f> &vectorPoint2fCorners);
public:
static QImage mat2Image(cv::Mat mat); // cv::Mat 转 QImage
private:
bool _running; // 线程是否运行
private:
cv::VideoCapture *_pVideoCapture; // 摄像头实例
bool _showProperty; // 是否显示属性参数
double _brightness; // 亮度
double _contrast; // 对比度
double _saturation; // 饱和度
double _hue; // 色调
double _gain; // 增益
double _exposure; // 曝光度
int _width; // 宽度
int _height; // 高度
int _fps; // 帧率
bool _opened; // 摄像头是否打开
bool _calibratingBefore; // 标定前一个变化状态
bool _calibrating; // 正在标定
bool _calibratFinished; // 校准完了(当前最近一个已经校准)
int _calibrateRegionX; // 标定region区域像素起始x坐标
int _calibrateRegionY; // 标定region区域像素起始y坐标
int _calibrateRegionWidth; // 标定region区域像素宽度
int _calibrateRegionHeight; // 标定region区域像素高度
cv::Mat _mat; // 缓存一帧
cv::Mat _resultMat; // 结果
int _chessboardColCornerCount; // 一列多少个角点
int _chessboardRowCornerCount; // 一行多少个角点
std::vector<std::vector<cv::Point3f>> _vectorObjectPoint; // 缓存点
std::vector<std::vector<cv::Point2f>> _vectorImagePoint;
bool _snapshot; // 拍照
private: // 计算内参和畸变系数
cv::Mat _cameraMatrix; // 相机矩阵(接收输出)
cv::Mat _distCoeffs; // 畸变系数(接收输出)
std::vector<cv::Mat> _rotate; // 旋转量(接收输出)
std::vector<cv::Mat> _translate; // 偏移量(接收输出)
private:
CameraInfo _cameraInfo;
};
#endif // CALIBRATEMANAGER_H
CalibrateManager.cpp
...
void CalibrateManager::slot_captrueFrame()
{
if(!_running)
{
return;
}
if(_pVideoCapture->isOpened())
{
*_pVideoCapture >> _mat;
if(_showProperty)
{
cv::putText(_mat, QString("brightness: %1")
.arg(_brightness).toStdString(),
cvPoint(0, 30), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(255));
cv::putText(_mat, QString(" contrast: %1").arg(_contrast ).toStdString(),
cvPoint(0, 60), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(255));
cv::putText(_mat, QString("saturation: %1").arg(_saturation).toStdString(),
cvPoint(0, 90), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(255));
cv::putText(_mat, QString(" hue: %1").arg(_hue ).toStdString(),
cvPoint(0, 120), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(255));
cv::putText(_mat, QString(" gain: %1").arg(_gain ).toStdString(),
cvPoint(0, 150), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(255));
cv::putText(_mat, QString(" exposure: %1").arg(_exposure ).toStdString(),
cvPoint(0, 180), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(255));
cv::putText(_mat, QString("press ESC out").toStdString(),
cvPoint(0, 210), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(255));
}
// 第一次进入标定
if(!_calibratingBefore && _calibrating)
{
_calibrateRegionX = 0;
_calibrateRegionY = 0;
_calibrateRegionWidth = _width;
_calibrateRegionHeight = _height;
_calibratingBefore = true;
emit signal_regionChanged(_calibrateRegionX, _calibrateRegionY, _calibrateRegionWidth, _calibrateRegionHeight);
QImage srcImage = mat2Image(_mat);
emit signal_captureOneResultFrame(srcImage);
}else if(_calibrating)
{
QImage srcImage = mat2Image(_mat);
// 获取
std::vector<cv::Point2f> imagePoints;
if(findChessboard(_chessboardRowCornerCount,
_chessboardColCornerCount,
_mat,
imagePoints))
{
// 这是拍照截图
if(_snapshot)
{
// 三维世界坐标系
std::vector<cv::Point3f> objectPoints;
for(int i = 0; i < _chessboardRowCornerCount; i++)
{
for(int j = 0; j < _chessboardColCornerCount; j++)
{
objectPoints.push_back(cv::Point3f(j, i, 0));
}
}
// 图像识别出来的角点(一张图一组)
_vectorObjectPoint.push_back(objectPoints);
_vectorImagePoint.push_back(imagePoints);
_snapshot = false;
{
SnapShot snapShot;
snapShot.dateTime = QDateTime::currentDateTime().toString("yyyy-MM-dd hh:mm:ss:zzz");
snapShot.srcImage = srcImage;
snapShot.drawChessboardImage = mat2Image(_mat);
snapShot.imagePoints = imagePoints;
snapShot.objectPoints = objectPoints;
_cameraInfo.listSnapShot.append(snapShot);
// 更新标定结果
updateCalibrateResult();
// 计算误差率
calculateCalibrateErrors();
// 抛出更新
emit signal_cameraInfo(_cameraInfo);
}
}
}
// if(_cameraInfo.listSnapShot.size() == 0)
// {
// QImage srcImage = mat2Image(_mat);
// emit signal_captureOneResultFrame(srcImage);
// }else{
// cv::undistort(_mat, _resultMat, _cameraMatrix, _distCoeffs);
// QImage image = mat2Image(_resultMat);
// emit signal_captureOneResultFrame(image);
// }
}else if(_calibratFinished)
{
// if(_cameraInfo.listSnapShot.size() == 0)
// {
// QImage srcImage = mat2Image(_mat);
// emit signal_captureOneResultFrame(srcImage);
// }else{
// cv::undistort(_mat, _resultMat, _cameraMatrix, _distCoeffs);
// QImage image = mat2Image(_resultMat);
// emit signal_captureOneResultFrame(image);
// }
}
// 抛出原图
QImage image = mat2Image(_mat);
emit signal_captureOneFrame(image);
// 抛出校正图
if(_cameraMatrix.empty())
{
emit signal_captureOneResultFrame(image);
}else{
LOG;
cv::undistort(_mat, _resultMat, _cameraMatrix, _distCoeffs);
QImage dstImage = mat2Image(_resultMat);
emit signal_captureOneResultFrame(dstImage);
}
QTimer::singleShot(5, this, SLOT(slot_captrueFrame()));
}
}
...
入坑
算法的研究优化过程中,受到摄像头光学、标定板、标定板所占视口大小,图像处理过程原本的流程优化、标定过程中动态的处理等多方面因素,坑多暂时未记录。
本文章博客地址:https://hpzwl.blog.csdn.net/article/details/141334834