CV党福音:YOLOv8实现实例分割(二)之训练过程

news2025/1/11 15:46:16

在上一篇博客中,我们已经了解了YOLOv8实例分割的基本流程,本章则是对数据集、以及训练过程等进行进一步的学习。

文章目录

    • 训练整体流程
    • 语义分割与实例分割
    • 数据集
    • 开启训练
    • 训练Debug
      • 数据封装
      • 损失函数初始化
      • 前向传播
    • 总结

训练整体流程

训练模型的整体流程如下,可以看到其与预测时相比,多了损失计算等过程,那么,接下来我将从模型前向传播与损失计算两个过程来梳理训练过程。

在这里插入图片描述

语义分割与实例分割

与语义分割不同,实例分割一般是首先使用目标检测算法找到图像中的不同实例对象,然后对每个实例对象进行语义分割。
YOLOv8中则是在原本检测头的基础上增加了分割头,两者共同作用。

总的来说,语义分割和实例分割在目标定义、输出结果和处理方式上有明显的区别。语义分割关注的是将图像划分为不同的语义区域,而实例分割则更进一步,不仅要进行语义分割,还要区分同一类别的不同实例。这种差异使得两者在计算机视觉任务中具有各自独特的应用场景。

在实际应用中,了解何时使用语义分割或实例分割是至关重要的。例如,在自动驾驶系统中,语义分割可能用于识别道路标志和行人,而实例分割则可能用于跟踪和区分不同的车辆。同样地,在医学影像分析中,语义分割可用于识别病变区域,而实例分割可用于精确区分不同的肿瘤实例。

数据集

在本次训练中,博主使用的是coco-8这个小数据集进行实验,该数据集内只有8张图像:

在这里插入图片描述

我们以第一张图像为例,其标签标注如下:

25 0.397235 0.750734 0.337422 0.750734 0.341996 0.749031 0.250021 0.700625 0.194802 0.691984 0.190229 0.688516 0.0751975 0.598625 0.059106 0.600359 0.0728898 0.596906 0.00852391 0.481078 0.02 0.465531 0.0130977 0.351437 0 0.351437 0.02 0.342813 0.0798129 0.228719 0.109709 0.223531 0.231601 0.138828 0.222391 0.123266 0.247734 0.130187 0.424823 0.095625 0.422516 0.0783125 0.434012 0.0904219 0.629522 0.109438 0.629522 0.0990625 0.636424 0.111172 0.797401 0.188938 0.806611 0.183781 0.797401 0.194141 0.900915 0.303031 0.914699 0.301297 0.900915 0.311688 0.94 0.429234 0.951518 0.429234 0.937734 0.437859 0.903222 0.555422 0.907838 0.569266 0.891726 0.560609 0.822703 0.631484 0.790499 0.512203 0.753721 0.498375 0.710021 0.484547 0.716923 0.399844 0.716923 0.34625 0.691622 0.313422 0.677817 0.308219 0.661726 0.268469 0.599626 0.251188 0.55131 0.246 0.509917 0.254656 0.477713 0.268469 0.431705 0.304766 0.422516 0.391188 0.459335 0.462063 0.482328 0.481078 0.482328 0.588266 0.463909 0.586547 0.468503 0.498375 0.404096 0.505281 0.378815 0.529484 0.355821 0.614203 0.397235 0.750734 0.459335 0.724828 0.480021 0.731734 0.477713 0.643578 0.470811 0.6505 0.459335 0.724828
0 0.717838 0.344813 0.723846 0.421563 0.738877 0.48025 0.783929 0.498313 0.822973 0.579578 0.925094 0.884313 0.985156 0.963313 0.994158 0.981375 0.898046 0.981375 0.83499 0.909141 0.783929 0.746609 0.780915 0.827875 0.804948 0.938484 0.825967 0.981375 0.6758 0.974609 0.45052 0.972344 0.45052 0.947516 0.52262 0.827875 0.465551 0.827875 0.435509 0.825625 0.420499 0.7895 0.402474 0.757906 0.348399 0.586344 0.372432 0.523141 0.423493 0.507344 0.477568 0.489281 0.435509 0.435109 0.402474 0.387703 0.432516 0.295141 0.465551 0.274828 0.492578 0.263547 0.53763 0.254516 0.612723 0.263547 0.645759 0.272578 0.678794 0.308688

按行划分目标,第一个数字为目标类别,后面每两个数值为一个坐标(即标注的关键点的坐标)

 类别  (x1,y1)  (x2,y2)  (x3,y3)   .....

第一张图像的检测与分割结果如下:

在这里插入图片描述

开启训练

开启训练代码如下:

from ultralytics import YOLO
if __name__=="__main__":
    # Load a model
    model = YOLO("yolov8n-seg.yaml").load("yolov8n-seg.pt")  # build from YAML and transfer weights
    # Train the model
    results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)

训练结果如下:

在这里插入图片描述

从上一个博文中我们得知YOLOv8实例分割的结果中包含检测结果,因此,其损失函数共有三个,分别是目标分类损失、预测框回归损失以及mask分类损失。

由于YOLOv8需要完成多个模型的训练,因此其一层层的封装文件较多,我们需要慢慢的寻找。
其使用到的代码多在下面的文件夹中。

在这里插入图片描述

首先是跳转到train方法中,判断是否开启分布式训练,由于博主是在笔记本上进行的,故执行else中的方法:

self._do_train(world_size)

此时,在调用trian时,便已经完成了train的相关初始化了,传入的参数如下(参数太多,博主删了一部分):

task=segment
mode=train
model=yolov8n-seg.yaml
data=D:\chat\programs\yolo\ultralytics\ultralytics\cfg\datasets\coco8-seg.yaml
epochs=100
batch=16
imgsz=640
save=True
workers=8
project=None
name=train15
exist_ok=False
pretrained=True
optimizer=auto
verbose=True
seed=0
deterministic=True
close_mosaic=10
resume=False
fraction=1.0
mask_ratio=4
dropout=0.0
val=True
split=val
save_json=False
save_hybrid=False
iou=0.7
max_det=300
vid_stride=1
stream_buffer=False
visualize=False
augment=False
agnostic_nms=False
classes=None
retina_masks=False
line_width=None
format=torchscript
keras=False
optimize=False
int8=False
dynamic=False
simplify=False
opset=None
workspace=4
nms=False
lr0=0.01
lrf=0.01
momentum=0.937
weight_decay=0.0005
warmup_epochs=3.0
warmup_momentum=0.8
warmup_bias_lr=0.1
box=7.5
cls=0.5
dfl=1.5
pose=12.0
kobj=1.0
label_smoothing=0.0
nbs=64
hsv_h=0.015
hsv_s=0.7
hsv_v=0.4
degrees=0.0
translate=0.1
scale=0.5
tracker=botsort.yaml
save_dir=runs\segment\train15

此时的world_size=1,随后进入do_train方法中,该方法位于\ultralytics\engine\trainer.py中,这也是最终执行训练的地方。

def _do_train(self, world_size=1):
        """Train completed, evaluate and plot if specified by arguments."""
        if world_size > 1:
            self._setup_ddp(world_size)
        self._setup_train(world_size)

        nb = len(self.train_loader)  # number of batches
        nw = max(round(self.args.warmup_epochs * nb), 100) if self.args.warmup_epochs > 0 else -1  # warmup iterations
        last_opt_step = -1
        self.epoch_time = None
        self.epoch_time_start = time.time()
        self.train_time_start = time.time()
        self.run_callbacks("on_train_start")
        LOGGER.info(
            f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n'
            f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
            f"Logging results to {colorstr('bold', self.save_dir)}\n"
            f'Starting training for ' + (f"{self.args.time} hours..." if self.args.time else f"{self.epochs} epochs...")
        )
        if self.args.close_mosaic:
            base_idx = (self.epochs - self.args.close_mosaic) * nb
            self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])
        epoch = self.start_epoch
        self.optimizer.zero_grad()  # zero any resumed gradients to ensure stability on train start
        while True:
            self.epoch = epoch
            self.run_callbacks("on_train_epoch_start")
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")  # suppress 'Detected lr_scheduler.step() before optimizer.step()'
                self.scheduler.step()

            self.model.train()
            if RANK != -1:
                self.train_loader.sampler.set_epoch(epoch)
            pbar = enumerate(self.train_loader)
            # Update dataloader attributes (optional)
            if epoch == (self.epochs - self.args.close_mosaic):
                self._close_dataloader_mosaic()
                self.train_loader.reset()

            if RANK in {-1, 0}:
                LOGGER.info(self.progress_string())
                pbar = TQDM(enumerate(self.train_loader), total=nb)
            self.tloss = None
            for i, batch in pbar:
                self.run_callbacks("on_train_batch_start")
                # Warmup
                ni = i + nb * epoch
                if ni <= nw:
                    xi = [0, nw]  # x interp
                    self.accumulate = max(1, int(np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round()))
                    for j, x in enumerate(self.optimizer.param_groups):
                        # Bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        x["lr"] = np.interp(
                            ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x["initial_lr"] * self.lf(epoch)]
                        )
                        if "momentum" in x:
                            x["momentum"] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])

                # Forward
                with autocast(self.amp):
                    batch = self.preprocess_batch(batch)
                    self.loss, self.loss_items = self.model(batch)
                    if RANK != -1:
                        self.loss *= world_size
                    self.tloss = (
                        (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None else self.loss_items
                    )

                # Backward
                self.scaler.scale(self.loss).backward()

                # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
                if ni - last_opt_step >= self.accumulate:
                    self.optimizer_step()
                    last_opt_step = ni

                    # Timed stopping
                    if self.args.time:
                        self.stop = (time.time() - self.train_time_start) > (self.args.time * 3600)
                        if RANK != -1:  # if DDP training
                            broadcast_list = [self.stop if RANK == 0 else None]
                            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
                            self.stop = broadcast_list[0]
                        if self.stop:  # training time exceeded
                            break

                # Log
                mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G"  # (GB)
                loss_len = self.tloss.shape[0] if len(self.tloss.shape) else 1
                losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
                if RANK in {-1, 0}:
                    pbar.set_description(
                        ("%11s" * 2 + "%11.4g" * (2 + loss_len))
                        % (f"{epoch + 1}/{self.epochs}", mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1])
                    )
                    self.run_callbacks("on_batch_end")
                    if self.args.plots and ni in self.plot_idx:
                        self.plot_training_samples(batch, ni)

                self.run_callbacks("on_train_batch_end")

            self.lr = {f"lr/pg{ir}": x["lr"] for ir, x in enumerate(self.optimizer.param_groups)}  # for loggers
            self.run_callbacks("on_train_epoch_end")
            if RANK in {-1, 0}:
                final_epoch = epoch + 1 >= self.epochs
                self.ema.update_attr(self.model, include=["yaml", "nc", "args", "names", "stride", "class_weights"])

                # Validation
                if self.args.val or final_epoch or self.stopper.possible_stop or self.stop:
                    self.metrics, self.fitness = self.validate()
                self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr})
                self.stop |= self.stopper(epoch + 1, self.fitness) or final_epoch
                if self.args.time:
                    self.stop |= (time.time() - self.train_time_start) > (self.args.time * 3600)

                # Save model
                if self.args.save or final_epoch:
                    self.save_model()
                    self.run_callbacks("on_model_save")

            # Scheduler
            t = time.time()
            self.epoch_time = t - self.epoch_time_start
            self.epoch_time_start = t
            if self.args.time:
                mean_epoch_time = (t - self.train_time_start) / (epoch - self.start_epoch + 1)
                self.epochs = self.args.epochs = math.ceil(self.args.time * 3600 / mean_epoch_time)
                self._setup_scheduler()
                self.scheduler.last_epoch = self.epoch  # do not move
                self.stop |= epoch >= self.epochs  # stop if exceeded epochs
            self.run_callbacks("on_fit_epoch_end")
            gc.collect()
            torch.cuda.empty_cache()  # clear GPU memory at end of epoch, may help reduce CUDA out of memory errors

            # Early Stopping
            if RANK != -1:  # if DDP training
                broadcast_list = [self.stop if RANK == 0 else None]
                dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
                self.stop = broadcast_list[0]
            if self.stop:
                break  # must break all DDP ranks
            epoch += 1

        if RANK in {-1, 0}:
            # Do final val with best.pt
            LOGGER.info(
                f"\n{epoch - self.start_epoch + 1} epochs completed in "
                f"{(time.time() - self.train_time_start) / 3600:.3f} hours."
            )
            self.final_eval()
            if self.args.plots:
                self.plot_metrics()
            self.run_callbacks("on_train_end")
        gc.collect()
        torch.cuda.empty_cache()
        self.run_callbacks("teardown")

训练Debug

那么,下面我们通过DeBug来梳理一下模型的训练过程吧

首先,我们明确一下损失函数有以下几个:其中boxdfl都是用于边界框回归的,seg则是分割损失,用于训练mask的,而cls则是类别损失

('box_loss', 'seg_loss', 'cls_loss', 'dfl_loss')

开启训练模式,需要注意的是,我们虽然设计batch=16,但训练集中只有4张图像,因此batch=4

self.model.train()

数据封装

通过TQDM将训练器封装为进度条的形式,并将其输入到模型中进行前向传播

pbar = TQDM(enumerate(self.train_loader), total=nb)
for i, batch in pbar:
	batch = self.preprocess_batch(batch)#前处理(这个前处理没有啥操作,直接返回batch)
	self.loss, self.loss_items = self.model(batch)#前向传播

前处理操作,其实啥也没有操作。

 def preprocess_batch(self, batch):
        return batch

在这里插入图片描述
我们可以看到传入到模型中的batch数据如下,其直接计算了损失:

self.loss, self.loss_items = self.model(batch)

损失函数初始化

这里博主刚开始看到时并不明白,这个model该去哪里DeBug,因为SegmentationModel中并没有定义forward方法,后来想到model本质是SegmentationModel,而SegmentationModel又是继承于DetectionModel,而DetectionModel则继承于BaseModel,最终在BaseModel\ultralytics\nn\tasks.py))中找到了对应的前向传播方法:

代码如下,其判断传入的x是否是dict类型,如果是dict类型,即说明是训练集与验证集的数据(因为其包含图像之外的其他信息,如标注信息等),否则的话,x应该只有一个数据,即图像,则执行预测。

class BaseModel(nn.Module):
    def forward(self, x, *args, **kwargs):
        if isinstance(x, dict):  # for cases of training and validating while training.
            return self.loss(x, *args, **kwargs)
        return self.predict(x, *args, **kwargs)

x即为刚刚传入的batch,类型为dict,故计算损失,self.loss方法如下,即首先会创建好对应的损失函数,随后将batch中的img进行前向传播,得到预测值,再将该预测值与batch(内含标注信息)一起计算损失值。

def loss(self, batch, preds=None):
        if getattr(self, "criterion", None) is None:#判断是否有criterion属性,没有的话创建
            self.criterion = self.init_criterion()

        preds = self.forward(batch["img"]) if preds is None else preds
        return self.criterion(preds, batch)

由于这是BaseModel,而不同的模型的损失函数是不一样的,因此每个子类都重写了对应的损失函数构造方法:
BaseModel的init_criterion方法,其提示要计算损失需要实现对应的任务头(任务类型)

def init_criterion(self):
        """Initialize the loss criterion for the BaseModel."""
        raise NotImplementedError("compute_loss() needs to be implemented by task heads")

重写在SegmentationModel中的init_criterion方法

def init_criterion(self):
        """Initialize the loss criterion for the SegmentationModel."""
        return v8SegmentationLoss(self)

我们看下v8SegmentationLoss方法,其也是继承了v8DetectionLoss

class v8SegmentationLoss(v8DetectionLoss):
    """Criterion class for computing training losses."""
    def __init__(self, model):  # model must be de-paralleled
        """Initializes the v8SegmentationLoss class, taking a de-paralleled model as argument."""
        super().__init__(model)
        self.overlap = model.args.overlap_mask

在这里插入图片描述

随后便完成了损失函数的初始化,接下来便是前向传播过程:

前向传播

前向传播依旧是调用的BaseModelforward方法,只不过,此时传入的数据是batch['img'],不再是dict类型,所有其执行的是预测操作:

 def forward(self, x, *args, **kwargs):
        if isinstance(x, dict):  # for cases of training and validating while training.
            return self.loss(x, *args, **kwargs)
        return self.predict(x, *args, **kwargs)

predict方法定义如下:

    def predict(self, x, profile=False, visualize=False, augment=False, embed=None):
        if augment:#不执行
            return self._predict_augment(x)
        return self._predict_once(x, profile, visualize, embed)

接下来这段代码则是重中之重,其通过读取模型结构,完成了前向传播过程:

def _predict_once(self, x, profile=False, visualize=False, embed=None):
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

我们可以看到model的结构如下:

Sequential(
  (0): Conv(
    (conv): Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(16, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (1): Conv(
    (conv): Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (2): C2f(
    (cv1): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (cv2): Conv(
      (conv): Conv2d(48, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): ModuleList(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(16, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (cv2): Conv(
          (conv): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(16, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (3): Conv(
    (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (4): C2f(
    (cv1): Conv(
      (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (cv2): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): ModuleList(
      (0-1): 2 x Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (5): Conv(
    (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (6): C2f(
    (cv1): Conv(
      (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (cv2): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): ModuleList(
      (0-1): 2 x Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (cv2): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (7): Conv(
    (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (8): C2f(
    (cv1): Conv(
      (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (cv2): Conv(
      (conv): Conv2d(384, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): ModuleList(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (cv2): Conv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (9): SPPF(
    (cv1): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (cv2): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
  )
  (10): Upsample(scale_factor=2.0, mode='nearest')
  (11): Concat()
  (12): C2f(
    (cv1): Conv(
      (conv): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (cv2): Conv(
      (conv): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): ModuleList(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (cv2): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (13): Upsample(scale_factor=2.0, mode='nearest')
  (14): Concat()
  (15): C2f(
    (cv1): Conv(
      (conv): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (cv2): Conv(
      (conv): Conv2d(96, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): ModuleList(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (16): Conv(
    (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (17): Concat()
  (18): C2f(
    (cv1): Conv(
      (conv): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (cv2): Conv(
      (conv): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): ModuleList(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (cv2): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (19): Conv(
    (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (20): Concat()
  (21): C2f(
    (cv1): Conv(
      (conv): Conv2d(384, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (cv2): Conv(
      (conv): Conv2d(384, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): ModuleList(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (cv2): Conv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (22): Segment(
    (cv2): ModuleList(
      (0): Sequential(
        (0): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
      )
      (1): Sequential(
        (0): Conv(
          (conv): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
      )
      (2): Sequential(
        (0): Conv(
          (conv): Conv2d(256, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
      )
    )
    (cv3): ModuleList(
      (0): Sequential(
        (0): Conv(
          (conv): Conv2d(64, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): Conv(
          (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (2): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1))
      )
      (1): Sequential(
        (0): Conv(
          (conv): Conv2d(128, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): Conv(
          (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (2): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1))
      )
      (2): Sequential(
        (0): Conv(
          (conv): Conv2d(256, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): Conv(
          (conv): Conv2d(80, 80, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(80, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (2): Conv2d(80, 80, kernel_size=(1, 1), stride=(1, 1))
      )
    )
    (dfl): DFL(
      (conv): Conv2d(16, 1, kernel_size=(1, 1), stride=(1, 1), bias=False)
    )
    (proto): Proto(
      (cv1): Conv(
        (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (upsample): ConvTranspose2d(64, 64, kernel_size=(2, 2), stride=(2, 2))
      (cv2): Conv(
        (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (cv3): Conv(
        (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
    )
    (cv4): ModuleList(
      (0): Sequential(
        (0): Conv(
          (conv): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (2): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
      )
      (1): Sequential(
        (0): Conv(
          (conv): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (2): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
      )
      (2): Sequential(
        (0): Conv(
          (conv): Conv2d(256, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (2): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
      )
    )
  )
)

在这里,通过将model中的每个模块都遍历处理,从而获得每个模块的输出结果。

for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)

如第一次遍历读取的 m(模块)结构如下,x 的值为torch.Size([4, 3, 640, 640])

Conv(
  (conv): Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn): BatchNorm2d(16, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  (act): SiLU(inplace=True)
)

输入m 结构后得到的结果为torch.Size([4, 16, 320, 320])

x = m(x)  # run
y.append(x if m.i in self.save else None)  # save output

同时还会判断哪些层输出的数据是需要我们保存的,因为有些模块的输入值并不是来源于上一层,可能需要其他层的结果
这里需要保存的输出层结果self.save[4, 6, 9, 12, 15, 18, 21]
随后就这样依次执行,最终就遍历了整个模型,也就得到了最终的输出结果。

这里的144=80+64,其中80是类别,64DEL模块的输出结果,用于生成预测框,这块不理解的可以参考我上一篇博客:

YOLOv8实现实例分割(一)

在这里插入图片描述
得到的预测结果与batch进行损失计算:

return self.criterion(preds, batch)

总结

在这篇博文中,我们完成了训练过程中的数据封装、损失函数定义,模型构建以及前向传播的学习,接下来便是将预测值与真值进行损失计算了,尽请期待。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2051451.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

洗衣机洗衣服一些知识

01智能:按衣物多少自动调节合适水位的标准洗涤程序 (需要30分钟时间) 02:大物:较大,较厚的衣服洗涤 03:轻柔:毛织品或内衣洗涤 04:快速:少量清污衣服洗涤 (13分钟) 05:浸泡:先浸泡一段时间再洗涤 06:单洗:只洗衣不脱水 07:单脱:只脱水不洗衣 08:洁桶:清洁洗衣桶 准备工作: (1)…

XSS反射型和DOM型+DOM破坏

目录 第一关 源码分析 payload 第二关 源码分析 payload 第三关 源码分析 payload 第四关 源码分析 payload 第五关 源码分析 payload 第六关 源码分析 第七关 源码分析 方法一&#xff1a;构造函数 方法二&#xff1a;parseInt 方法三&#xff1a;locat…

龙门吊(天车)防撞方案

防撞雷达设备&#xff0c;是一款基于无线微波技术自主研发的应答式高精度无线防撞产品&#xff0c;该产品具有测距精度高&#xff08;最高可到10厘米&#xff09;&#xff0c;测距稳定&#xff0c;无累计误差&#xff0c;粉尘、水汽不影响测距精度&#xff0c;抗电磁干扰等特点…

oracle数据库目录及文件

oracle数据库目录及文件 oracle安装后所有根目录 1、admin 目录 里边有不同文件夹&#xff0c;代表一个实例&#xff0c;记录 Oracle 实例的配置&#xff0c;运行日志等文件。每个实例一个目录。 SID&#xff1a;System IDentifier 的缩写&#xff0c;是 Oracle 实例的唯一标记…

IT服务标准化知识体系攻略(至简)

标准是为了在一定范围内获得最佳秩序 &#xff0c;经协商一致制定并由公开机构批准共同使用和重复使用的和中规范性文件。标准是标准化活动的主要成果之一。国家标准的制定有一套正常程序&#xff0c;分为预阶段、立项阶段、起草阶段、征求意见阶段、审查阶段、批准阶段、出版阶…

【区块链+金融服务】第一创业证券开发银行间报价 Dapp | FISCO BCOS应用案例

在银行间市场现券交易的过程中&#xff0c;通过银保监会发牌的代理机构进行报价交易&#xff0c;已解决无代理阶段存在的许多问题。 但是由于业务需要&#xff0c;使用以前模式进行报价交易的仍占有一定比例。 针对这一现状&#xff0c;第一创业证券基于 FISCO BCOS 区块链底层…

工作 sql 数据库创建 表的修改 插入数据

一. 创建数据库 创建数据库 CREATE DATABASE (IF NOT EXISTS) 数据库名称;使用数据库 USE 数据库名称;查看当前数据库中存在的表 SHOW TABLES;删除数据库 DROP DATABASE demolibang 二. 创建表 格式&#xff1a; CREATE TABLE IF NOT EXISTS 表名&#xff08; 字段名 字…

Unity动画模块 之 3D模型导入基础设置 Materials

本文仅作笔记学习和分享&#xff0c;不用做任何商业用途 本文包括但不限于unity官方手册&#xff0c;unity唐老狮等教程知识&#xff0c;如有不足还请斧正 还是那句话&#xff0c;用到的时候再看看&#xff0c;死记硬背不是正经的学习方法&#xff0c;但是又不得不知道一下&…

javaweb_10:XML映射文件

一、规范 1、XML映射文件的名称与Mapper接口名称一致&#xff0c;并且将XML映射文件和Mapper接口放在相同的包下&#xff08;同包同名&#xff09;。 2、XML映射文件的namesapce属性为Mapper接口全限定名一致。 3、 XML映射文件中sql语句的id与Mapper接口中的方法名一致&a…

培训第二十七天(lvs_nat模式与lvs_dr模式配置)

上午 核心&#xff1a;内核中的ipvs&#xff0c;ipvsadm1、安装ipvsadm[rootnat ~]# yum -y install ipvsadm2、配置规则查看所有的规则&#xff0c;如果已经配置好规则&#xff0c;重启之后也就没有了[rootnat ~]# ipvsadm -L -n 1、配置vip网卡 &#xff08;1&#xff09;在…

数组前缀和算法技巧

一、什么是数组前缀和 数组中前缀和技巧&#xff08;Prefix Sum Technique&#xff09;是一种常见且有用的算法技巧&#xff0c;特别适用于需要频繁查询数组区间和的问题。这种技巧通过创建一个额外的数组来存储原始数组中特定位置之前所有元素的和&#xff0c;从而在需要计算…

【图论】并查集(Union-find Sets)

文章目录 前言一、并查集(Union-find Sets)基本概念基本操作步骤 二、并查集的操作步骤1. 初始化 init2. 查询 find、合并 union&#xff08;未进行路径压缩&#xff09;3. 查询 find、合并 union&#xff08;路径压缩&#xff09; 三、Kruskal 算法中 环 的判断并查集的使用 总…

C++中的string介绍(常用函数)

string类 为什么学习string类C语言中的字符串 标准库中的string类string类(了解)auto和范围forauto关键字范围for string类的常用接口说明(注意下面只讲解最常用的接口)string类对象的常见构造 string类对象的容量操作string类对象的访问及遍历操作string类对象的修改操作strin…

洛谷 P6280 [USACO20OPEN] Exercise G

题目来源于&#xff1a;洛谷 题目本质&#xff1a;dp&#xff0c;素数筛法&#xff0c;质数 本题与P4161基本一模一样 首先&#xff0c;分析题目发现&#xff0c;某个排列的需要进行恰好 K 步变回原样&#xff0c;这个时候K的值就是这个排序中各个环的长的的最小公倍数(lcm)。…

wechatAssetsPicker组件的用法

文章目录 1. 概念介绍2. 思路与方法2.1 使用思路2.2 使用方法 3. 示例代码4. 内容总结 我们在上一章回中介绍了"ImagePicker使用总结"相关的内容&#xff0c;本章回中将介绍wechat_assets_picker这个三方包.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念介…

红外遥控设计验证

前言 红外遥控是一种无线、非接触控制技术&#xff0c;具有抗干扰能力强&#xff0c;信息传输可靠&#xff0c;功耗低&#xff0c;成本低&#xff0c;易实现等显著优点&#xff0c;被诸多电子设备特别是家用电器广泛采用&#xff0c;并越来越多的应用到计算机和手机系统中。本文…

位运算(1)

1.获取第i位的二进制数(只出现一次数字2)&#xff1a; 2.将第i位的二进制设为1&#xff08;只出现一次数字2&#xff09;&#xff1a; 3.int最低位为1的数&#xff08;只出现一次数字3&#xff09;&#xff1a;

【2024】docker镜像拉取失败网络超时解决办法-自建镜像加速服务

目录 前言一、直接配置镜像加速地址二、自己搭建中转服务进行镜像加速1、Fork副本2、创建cloudflare3、注册域名4、测试使用5、配置变量 前言 近期docker官方镜像拉取经常容易出现网络超时&#xff0c;下面为一些常用的处理解决部分 实现docker镜像拉取加速解决方案 直接使用一…

【iOS】Block底层分析

目录 前言Block底层结构Block捕获变量原理捕获局部变量&#xff08;auto、static&#xff09;全局变量捕获实例self Block类型Block的copyBlock作为返回值将Block赋值给__strong指针Block作为Cocoa API中方法名含有usingBlock的方法参数Block作为GCD API的方法参数Block属性的写…

[第五空间 2021]EasyCleanup

题目源代码&#xff1a; <?php if(!isset($_GET[mode])){ highlight_file(__file__); }else if($_GET[mode] "eval"){ $shell isset($_GET[shell]) ? $_GET[shell] : phpinfo();; if(strlen($shell) > 15 | filter($shell) | checkNums($shell)) exit(&q…