【iOS】Block底层分析

news2025/1/11 17:58:09

目录

    • 前言
    • Block底层结构
    • Block捕获变量原理
      • 捕获局部变量(auto、static)
      • 全局变量
      • 捕获实例`self`
    • Block类型
    • Block的copy
      • Block作为返回值
      • 将Block赋值给__strong指针
      • Block作为Cocoa API中方法名含有usingBlock的方法参数
      • Block作为GCD API的方法参数
      • Block属性的写法
    • Block访问对象类型的auto变量
      • Block在栈上
      • Block被拷贝到堆上
      • Block从堆上移除
    • 修饰符__block
      • __block内存管理
      • __forwarding指针
      • __block修饰对象类型
    • Block循环引用
      • 解决办法
      • 强弱共舞
    • 总结


前言

Block是带有局部变量的匿名函数,函数实现就是代码块里的内容,同样有参数和非返回值,本质是一个封装了函数调用以及函数调用环境的OC对象,因为它内部有isa指针

Block的基本使用请看这两篇文章:

  • k
  • l

本篇文章着重探究Block这些特性的底层原理

Block底层结构

声明一个最简单的块并调用:

void (^block)(void) = ^{
    NSLog(@"Hello World!");
};
block();

使用xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc main.m命令将OC代码转换成C++代码:

// 原本的代码有各种强制转换,目前不重要,先删去从简

// 声明并实现一个block
// void (*block)(void) = ((void (*)(int, int))&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));
block = &__main_block_impl_0(__main_block_func_0, &__main_block_desc_0_DATA);


// 调用执行block
// ((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
block->FuncPtr(block);
// __main_block_impl_0可以直接转换为__block_impl类型,是因为两个类型的结构体地址是一样的,而且相当于直接把__block_impl里的值都放到__main_block_impl_0里

这些穿插了许多下划线的符号实际上是不同的结构体变量,Block本质就是struct __main_block_impl_0类型的结构体,下图清晰地说明了block的底层结构:

在这里插入图片描述
__main_block_impl_0可以直接转换为__block_impl类型,是因为两个类型的结构体地址是一样的(相当于直接把__block_impl里的值都放到__main_block_impl_0里)
所以block.impl->FuncPtr(block)就相当于block->FuncPtr(block)

Block捕获变量原理

为了保证block内部能够正常访问外部的变量,block有个变量捕获机制

捕获局部变量(auto、static)

auto:自动变量,离开作用域就自动销毁,只存在于局部变量
static:静态局部变量

// 不加关键字默认是auto变量
/*auto*/ int age = 10;
static int height = 175;

void (^block)(void) = ^{
    // age、height的值捕获进来(capture))
    NSLog(@"age is %d, height is %d", age, height);
};

// 修改局部变量的值
age = 20;
height = 180;

block();
NSLog(@"%d %d", age, height);

打印结果:

在这里插入图片描述

可以看到age仍为修改前的值,而height确确实实被修改了

将以上代码转换成C++代码来看一下:

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  int age;
  int *height;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _age, int *_height, int flags=0) : age(_age), height(_height) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};
  • Block结构体的变量多了两个,分别是ageheight,这说明外部的变量被捕获到了Block的内部
  • 构造函数后面的 : age(_age), height(_height)语法会自动将_age、_height赋值给int age、int* height来保存

声明实现Block调用析构函数:

int age = 10;
static int height = 175;

block = ((void (*)())&__test_block_impl_0((void *)__test_block_func_0, &__test_block_desc_0_DATA, age, &height));

age = 20;
height = 180;

而后调用Block,实际调用__main_block_func_0

block->FunPtr(block)
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  int age = __cself->age; // bound by copy
  int *height = __cself->height; // bound by copy

  NSLog((NSString *)&__NSConstantStringImpl__var_folders_2r__m13fp2x2n9dvlr8d68yry500000gn_T_main_d2875b_mi_0, age, (*height));
}

此时的age是值传递,打印的只是Block初始化时传进去的,后面age修改跟这个值无关;height是指针传递,打印的是height变量地址一直所指向那块内存的值

全局变量

int age_ = 10;
static int height_ = 175;

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        
        void (^block)(void) = ^{
            NSLog(@"age_ is %d, height_ is %d", age_, height_);
        };

        age_ = 20;
        height_ = 180;
        
        block();
       
    }
    return 0;
}

全局变量一直在内存中,打印的一直是最新的值,不用捕获

在这里插入图片描述

为什么会有这样的差异呢?

auto和static:因为作用域的问题,自动变量的内存随时可能被销毁,所以要捕获就赶紧把它的值拿进来,防止调用的时候访问不到;静态变量就不一样了,它一直在内存中(作用域仅限于定义它们的函数、它们不能在函数外访问),随时可以通过指针访问到最新的值

全局变量:在Block中访问局部变量相当于是跨函数访问,要先将变量存储在Block里(捕获),使用的时候再从Block中取出,而全局变量是直接访问

捕获实例self

- (void)testSelf {
    void (^block)(void) = ^{
    // NSLog(@"--------%p -- %p -- %p -- %p", self, _name, self->_name, self.name);
        NSLog(@"--------%p", self);
        /*
        NSLog(@"--------%p", self->_name);
        相当于NSLog(@"--------%p", _name);
        也会捕获进去
        */
    };
    block();
}

看了它的C++实现后,发现self也会被捕获进去

实际上OC方法转换成C++函数后会发现前两个参数永远是方法调用者self、方法名_cmd

void testSelf(Person* self, SEL _cmd, ) {
	// ...
}

即然self是参数,参数也是局部变量,它被捕获进Block也就能解释得通了

Block类型

上面提到Block是OC对象,因为它有isa指针,对象的isa指向它的类型,那么Block都有什么类型呢?

首先运行以下代码:

void (^block)(void) = ^{
    NSLog(@"Hello!");
};
NSLog(@"%@ %@", block, [block class]);
NSLog(@"%@", [[block class] superclass]);
NSLog(@"%@", [[[block class] superclass] superclass]);
/*
 __NSGlobalBlock__
 NSBlock
 NSObject
 */

可以看到Block类型的根类是NSObject,也能说明Block是一个OC对象

不同操作对应的Block类型不同

// Global:没有访问auto变量,跟static变量无关
void (^block1)(void) = ^{
          NSLog(@"Hello");
};

// 函数调用栈:要调用一个函数的时候,就会指定一块栈区空间给这个函数用
// 一旦函数调用完毕后,栈区的这块空间就会回收,变成垃圾数据,会被其他数据覆盖

// Stack:访问了auto变量
int age = 21;
void (^block2)(void) = ^{
    NSLog(@"Hello - %d", age);
};
// ARC下打印Malloc?MRC下确实是Stack

NSLog(@"%@ %@ %@", [block1 class], [block2 class], [^{
    NSLog(@"%d", age);
} class]); // 打印结果:__NSGlobalBlock__ __NSStackBlock__ __NSStackBlock__

// 编译完成后isa指向是_NSConcreteStackBlock、_NSConcreteMallocBlock、_NSConcreteGlobalBlock
// 首先肯定以运行时的结果为准,Block确实有三种类型,可能会通过Runtime动态修改类型
  • 没有访问自动变量的Block类型是__NSGlobalBlock__,存储在数据段
    其实Global不常用,既然不访问变量,那么将代码块封装成函数一行直接调用才显得更为简洁

  • 访问了自动变量的Block类型是__NSStackBlock__,存储在栈区
    以上代码是在MRC下运行的

  • __NSStackBlock__的Block调用了copy后类型会变为__NSMallocBlock__,存储在堆区
    若是在ARC下运行,即使不用copy修饰编译器也会自动对__NSStackBlock__进行copy操作,block2的类型将会是Malloc类型

手动对每种类型的Block调用copy后的结果如下图所示

请添加图片描述

Block的copy

在ARC环境下,编译器会根据情况自动将栈上的block复制到堆上
放到堆上的目的是方便我们来控制他的生命周期,可以更有效的进行内存管理

Block作为返回值

typedef void(^BBlock)(void);

BBlock myBlock(void) {
    int age = 21;
    return ^{
        NSLog(@"----------%d", age);
    };
}

BBlock bblock = myBlock();
bblock();
NSLog(@"%@", [bblock class]); // __NSMallocBlock__
//BBlock myBlock(void) {
//    return [^{
//        NSLog(@"----------");
//    } copy];
//}

由于Block在栈区,所以函数调用完毕后Block内存就被销毁了,再去调用它就很危险,如果在MRC下运行上述代码,编译器会提示报错:

在这里插入图片描述

ARC下不必担心此问题,编译器会自动对返回的Block进行copy操作(如注释所写),返回拷贝到堆上的Block

将Block赋值给__strong指针

int age = 21;
/*__strong*/ BBlock bblock = ^{
    NSLog(@"--------%d", age);
};
NSLog(@"%@", [bblock class]);  // ARC:__NSMallocBlock__

// 没有被强指针指着
NSLog(@"%@", [^{
    NSLog(@"--------%d", age);
} class]); // __NSStackBlock__

Block作为Cocoa API中方法名含有usingBlock的方法参数

NSArray* array = @[@"one", @2, @{@"seven" : @7}];
// 遍历数组并调用Block
[array enumerateObjectsUsingBlock:^(id  _Nonnull obj, NSUInteger idx, BOOL * _Nonnull stop) {
    NSLog(@"%@ --- %lu", obj, (unsigned long)idx);
}];

在这里插入图片描述

Block作为GCD API的方法参数

static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
  
});
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(1.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
  
});

Block属性的写法

因为编译器会自动视情况进行copy操作,所以两种写法都没问题,只是为了统一规范建议使用copy来修饰属性

@property (strong, nonatomic) void (^block)(void);
@property (copy, nonatomic) void (^block)(void);

Block访问对象类型的auto变量

Block在栈上

只要Block存在栈上,无论访问外部变量是用强指针还是弱指针,都不会对外部auto变量产生强引用

Block被拷贝到堆上

如果Block被拷贝到堆上,会根据auto变量的修饰符(__strong、__weak、__unsafe_unretained)做出相应的操作

BBlock bblock;
{
    __strong Person* person = [[Person alloc] init];
    // __weak Person* person = [[Person alloc] init];
    person.age = 21;
    bblock = ^{
        // 在ARC环境下block会自动拷贝到堆区间,切换修饰符__strong和__weak,person分别会不释放和释放
        NSLog(@"-%d-", person.age);
    };
    
    // MRC环境下block是在栈区间的,所以不会对age进行强引用,person会随着作用域结束而释放
    //[bblock release];
}
NSLog(@"--------------");

将上面代码文件转换成C++文件:

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  Person *__strong person;
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, Person *__strong _person, int flags=0) : person(_person) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};

static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->person, (void*)src->person, 3/*BLOCK_FIELD_IS_OBJECT*/);}

Block内部的__main_block_desc_0结构体会调用copy函数,copy函数内部会调用_Block_object_assign函数,而_Block_object_assign函数会根据auto变量的修饰符(__strong、__weak、__unsafe_unretained)做出相应的操作,形成强引用(retain)或者弱引用

Block从堆上移除

如果Block从堆上移除,会调用Block内部的dispose函数,dispose函数内部会调用_Block_object_dispose函数,_Block_object_dispose函数会自动release引用的auto变量

static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->person, 3/*BLOCK_FIELD_IS_OBJECT*/);}

注:

  • 只有在引用对象类型的变量时,才会生成copydispose函数
  • 如果引用的是static修饰的对象类型,那么捕获的变量在C++代码中将会是Person *__strong *person;
  • 代码里有__weak,转换C++文件可能会报错cannot create __weak reference in file using manual reference,可以指定支持ARC、指定运行时系统版本xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc -fobjc-arc -fobjc-runtime=ios-8.0.0 main.m

使用GCD API验证Block对外部变量的强弱引用(Github Demo):

- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
    Person* person = [[Person alloc] init];
    
    __weak Person* weakPerson = person;
    
    // 强引用了,Block调用完毕释放了person才会释放
//    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
//        NSLog(@"---%@", person);
//    });
    
    // 弱引用,调用Block之前person已经释放
//    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
//        NSLog(@"---%@", weakPerson);
//    });
    
    // 编译器已经检查到会有强引用
//    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(1.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
//        NSLog(@"---1%@", weakPerson);
//        dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
//            NSLog(@"---2%@", person);
//        });
//    });
    
    // 不会等到弱引用就释放了
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(1.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
        NSLog(@"---1%@", person);
        dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
            NSLog(@"---2%@", weakPerson);
        });
    });
    
    NSLog(@"Screen Touched");
}

修饰符__block

如果在Block内部修改捕获的auto变量值,编译器将会报错:

int age = 21;
BBlock block = ^{
    age = 20;
    NSLog(@"%d", age);
};
block();

在这里插入图片描述

从底层可看出在这里修改变量的值,实际上是通过改变__main_block_fun_0函数里的局部变量达到改变main函数里的变量,这是两个独立的函数,显然不可能

1. 使用static修饰变量

static来修饰age属性,底层用指针访问,block内部引用的是age的地址值,函数间会传递变量的地址,可以根据地址去修改age的值,修改的就是同一块内存
但不好的是age属性会一直存放在内存中不销毁,造成多余的内存占用,而且会改变age属性的性质,不再是一个auto变量

2. 使用__block修饰变量

__block来修饰属性,底层会生成__Block_byref_age_0类型的结构体对象,里面存储着age的真实值

在这里插入图片描述

转换成C++文件来查看内部结构,经__block修饰后,会根据__main_block_impl_0里生成的age对象来修改内部的成员变量age而且在外面打印的age属性的地址值也是__Block_byref_age_0结构体里的成员变量age的地址,目的就是不需要知道内部的真实实现,所看到的就是打印出来的值

struct __Block_byref_age_0 {
  void *__isa;
__Block_byref_age_0 *__forwarding;  // 指向结构体本身
 int __flags;
 int __size;
 int age;
};

struct __main_block_impl_0 {
  struct __block_impl impl;
  struct __main_block_desc_0* Desc;
  __Block_byref_age_0 *age; // by ref
  
  __main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_age_0 *_age, int flags=0) : age(_age->__forwarding) {
    impl.isa = &_NSConcreteStackBlock;
    impl.Flags = flags;
    impl.FuncPtr = fp;
    Desc = desc;
  }
};

static struct __main_block_desc_0 {
  size_t reserved;
  size_t Block_size;
  void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
  void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};

int main(int argc, const char * argv[]) {
    /* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool; 
		
		// 传进去的是age的地址
        __attribute__((__blocks__(byref))) __Block_byref_age_0 age = {(void*)0,(__Block_byref_age_0 *)&age, 0, sizeof(__Block_byref_age_0), 10};
        
        Block block = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, p, (__Block_byref_age_0 *)&age, 570425344));
        ((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
    }
    return 0;
}

总结

  • __block可以用于解决block内部无法修改auto变量值的问题
  • 编译器会将__block变量包装成一个对象
  • 其实修改的变量是__block生成的对象里面存储的变量的值,而不是外面的auto变量,但是内部生成的相同的变量的地址和外面的auto变量地址值是一样的,所以修改了内部的变量也会修改了外面的auto变量
  • __block不能修饰全局变量、静态变量(static)

__block内存管理

程序编译时,block__block都是在栈中的,这时并不会对__block变量产生强引用

因为__block也会包装成 OC对象,所以block底层也会生成copy函数dispose函数

static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {
    _Block_object_assign((void*)&dst->age, (void*)src->age, 8/*BLOCK_FIELD_IS_BYREF*/);}

static void __main_block_dispose_0(struct __main_block_impl_0*src) {
    _Block_object_dispose((void*)src->age, 8/*BLOCK_FIELD_IS_BYREF*/);}

Block复制到堆上

blockcopy到堆时,会调用block内部的copy函数copy函数内部会调用_Block_object_assign函数,_Block_object_assign函数会对__block变量形成强引用(retain)
实际上,这时__block修饰的变量因为被包装成了OC对象,所以也会被拷贝到堆上,如果再有block强引用__block,由于__block变量已经拷贝到堆上了,就不会再拷贝了

在这里插入图片描述

Block从堆上移除

block从堆中移除时,会调用block内部的dispose函数dispose函数内部会调用_Block_object_dispose函数,_Block_object_dispose函数会自动释放引用的__block变量(release)

如果有多个block同时持有着__block变量,那么只有所有的block都从堆中移除了,__block变量才会被释放

在这里插入图片描述

__block和OC对象在block中的区别

__block生成的对象就是强引用,而NSObject对象会根据修饰符__strong或者__weak来区分是否要进行retain操作

注意:__weak不能修饰基本数据类型,编译器会报__weak' only applies to Objective-C object or block pointer types; type here is 'int'警告

__forwarding指针

static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
  __Block_byref_age_0 *age = __cself->age; // bound by ref
  (age->__forwarding->age) = 20;
}
  • 在栈中,__block中的__forwarding指针指向自己的内存地址
  • 复制到堆中之后,__forwarding指针指向堆中的__block,堆中的__forwarding指向堆中的__block
  • 这样的目的都是为了不论访问的__block是在栈上还是在堆上,都可以通过__forwarding指针找到存储在堆中的auto变量

在这里插入图片描述

保证20被存储在堆中Block所引用的变量

__block修饰对象类型

情况类似于Block捕获对象类型的auto变量,__block包装的对象结构体里的对象变量会有__strong__weak修饰

__block对象在栈上时,不会对指向的对象产生强引用

__block对象被copy到堆上时,也会生成一个新的结构体对象,并且只会被block进行强引用,会根据不同的修饰符__strong__weak来对应着该对象类型成员变量是被强引用(retain)或弱引用

struct __Block_byref_weakPerson_0 {
	void __isa;
	__Block_byref_weakPerson_0 __forwarding;
	int __flags;
	int __size;
	void (__Block_byref_id_object_copy)(void, void);
	void (__Block_byref_id_object_dispose)(void*);
	Person *__weak weakPerson;
};


static void __Block_byref_id_object_copy_131(void *dst, void src) {
_Block_object_assign((char)dst + 40, *(void * ) ((char)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void src) {
_Block_object_dispose((void * ) ((char)src + 40), 131);

// __Block_byref_weakPerson_0 weakPerson = {0, &weakPerson, 33554432, sizeof(__Block_byref_weakPerson_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131, person};
__attribute__((__blocks__(byref))) __Block_byref_weakPerson_0 weakPerson = {(void*)0,(__Block_byref_weakPerson_0 *)&weakPerson, 33554432, sizeof(__Block_byref_weakPerson_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131, person};

注:在MRC环境下即使用__block修饰,对于结构体对象的成员变量,__block内部只会对auto变量进行弱引用,无论加不加__weak,block还没有释放,__block修饰的变量就已经释放了,这点和在ARC环境下不同

Block循环引用

两个对象相互强引用,导致谁的引用计数都不会归零,谁都不会释放

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        Person* person = [[Person alloc] init];
        person.age = 21;
        person.block = ^{
            NSLog(@"%d", person.age);
        };
    }
    NSLog(@"111111111111");
    return 0;
}

结果就是person对象不会释放,因为没有调用dealloc方法

person对象里面的block属性强引用着block对象,而block对象内部也会有一个person的成员变量指向这个Person对象,这样就会造成循环引用,谁也无法释放

@implementation Person

- (void)test {
    self.block = ^{
        NSLog(@"%d", self.age);
    };
}

- (void)dealloc
{
    NSLog(@"%s", __func__);
}

@end

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        Person* person = [[Person alloc] init];
        person.age = 21;
        [person test];
    }
    return 0;
    NSLog(@"111111111111");
}

block引用(捕获,之前提到self就是函数的第一个参数,参数也是局部变量)selfself又持有block,同样会造成循环引用

在这里插入图片描述

解决办法

  • 使用__weak__unsafe_unretainedBlock指向对象的引用变为弱引用

    在这里插入图片描述

    //    __unsafe_unretained typeof(self)weakSelf = self;
    __weak typeof(self)weakSelf = self;
      
    self.block = ^{
        NSLog(@"%d", weakSelf.age);
    };
    
  • __block解决,用__block修饰对象会造成三者相互引用造成循环引用,需要手动调用block

    在这里插入图片描述

    __block Person* person = [[Person alloc] init];
    person.age = 21;
    person.block = ^{
        NSLog(@"%d", person.age);
        person = nil;
    };
    person.block();
    

    block内部也需要手动将person置空,这个person__block内部生成的指向Person对象的变量

  • block传参,将self作为参数传入block中,进行指针拷贝,并没有对self进行持有

    // Person.m
    self.block = ^(Person * _Nonnull person) {
        NSLog(@"%d", person.age);
    };
    self.block(self);
    
  • MRC下不支持__weak,只能使用__unsafe_unretained
    MRC下直接使用__block即可解决循环引用,上面提到了MRC环境下__block修饰的变量只会被弱引用,已达成效果:

    __block Person *person = [[Person alloc] init];
    person.age = 10;
    
    person.block = [^{
    	NSLog(@"age is %d", person.age);
    } copy];
    
    [person release];
    

强弱共舞

这种情况虽没有引起循环引用,但block延迟执行2秒,等person释放后,就无法获取其age,很不合理

__weak typeof(person) weakPerson = person;
person.block = ^{
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
        NSLog(@"%d", weakPerson.age);
    });
};
person.block();

改进一下:

__weak typeof(person) weakPerson = person;
person.block = ^{
    __strong __typeof(weakPerson)strongPerson = weakPerson;
    
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2.0 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
        NSLog(@"%d", strongPerson.age);
    });
};
person.block();

通过运行结果发现,完全解决了以上self中途被释放的问题,这是为什么呢?分析如下:

  • 在完成block中的操作之后,才调用了dealloc方法。添加strongWeak之后,持有关系为:self -> block -> strongWeak -> weakSelf -> self
  • weakSelf被强引用了就不会自动释放,因为strongWeak只是一个临时变量,它的声明周期只在block内部,block执行完毕后,strongWeak就会释放,而弱引用weakSelf也会自动释放

总结

Block在iOS开发中极为重要,非常适合处理异步操作、回调、集合操作等场景,重点学习Block的内存管理、变量捕获和循环引用解决方案

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2051426.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[第五空间 2021]EasyCleanup

题目源代码&#xff1a; <?php if(!isset($_GET[mode])){ highlight_file(__file__); }else if($_GET[mode] "eval"){ $shell isset($_GET[shell]) ? $_GET[shell] : phpinfo();; if(strlen($shell) > 15 | filter($shell) | checkNums($shell)) exit(&q…

git学习使用碰到的问题1

本来在B站上看到的关于stash的使用时视频末尾讲到git stash drop 编号 会删除暂存记录 确实也是这么回事&#xff0c;但是末尾说到git stash pop 编号时up主说在恢复工作进度的时候我们可以直接删除掉这个工作记录可以直接使用 git stash pop stash{0} 使用完以后却出现了如上图…

AI项目二十四:yolov10竹签模型,自动数竹签

若该文为原创文章&#xff0c;转载请注明原文出处。 原本是为部署RK3568而先熟悉yolov10流程的&#xff0c;采用自己的数据集&#xff0c;网上很多&#xff0c;检测竹签&#xff0c;并计数。 1、环境搭建 1.1 官方下载源码 官网地址&#xff1a;YOLOv10 gitbub官网源码 利用…

各类函数调用

目录 getpwuid函数 查看uid的name​编辑 symlink函数软链接&#xff08;创建快捷方式&#xff09; remove函数 rename函数 link硬链接 truncate函数控制文件大小 perror报错函数 strerror报错函数序列表 error报错函数&#xff1a;详细报错 Makefile编译函数、工程管…

考试题型宏观分析之公共营养师三级

背景 第一遍知识学习之后&#xff0c;打印《2023.10.14公共营养师三级真题》进行第一次摸底&#xff0c;首要目标在于通过摸底&#xff0c;对于考试题型进行宏观分析和了解&#xff0c;其次&#xff0c;对于后续的学习进行有的放矢 直至2024-08-18&#xff0c;对于上述资料的一…

ubuntu配pip的源

临时使用源 pip install [包名] -i [pip源URL]# 示例 pip install pytest -i https://pypi.tuna.tsinghua.edu.cn/simple更换配置pip镜像源 step1&#xff1a;创建一个配置文件 mkdir ~/.pip/ cd .pip sudo vim pip.conf step2:填写源信息&#xff0c;保存并退出【:wq】 [g…

Android 架构模式之 MVC

目录 架构设计的目的对 MVC 的理解Android 中 MVC 的问题试吃个小李子ViewModelController 大家好&#xff01; 作为 Android 程序猿&#xff0c;MVC 应该是我们第一个接触的架构吧&#xff0c;从开始接触 Android 那一刻起&#xff0c;我们就开始接触它&#xff0c;可还记得我…

【秋招笔试】8.18科大讯飞秋招-三语言题解

🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 编程一对一辅导 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 🍒 本专栏已收…

【接口测试】Postman + newman超详细图文安装教程

一、Postman安装 下载网址&#xff1a;Postman API Platform 打开网址&#xff0c;选择自己系统对应的版本进行下载。 双击Postman安装包&#xff0c;全自动安装&#xff0c;不需要任何人为干预。安装完成后&#xff0c;页面如下图&#xff0c;点击手动打开注册页面。 自行…

超详细!!!electron-vite-vue开发桌面应用之引入UI组件库element-plus(四)

云风网 云风笔记 云风知识库 一、安装element-plus以及图标库依赖 npm install element-plus --save npm install element-plus/icons-vue npm i -D unplugin-icons二、vite按需引入插件 npm install -D unplugin-vue-components unplugin-auto-importunplugin-vue-componen…

Linux-DNS域名解析服务

系列文章目录 提示&#xff1a;仅用于个人学习&#xff0c;进行查漏补缺使用。 1.Linux网络设置 2.LinuxDHCP服务 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 系列文章目录前言提示&#xff1a;以下是本篇文章…

扫描切除-实体轮廓:方程式驱动曲线路径vs螺旋线路径

最近,在使用solidworks2018的过程中,接触到扫描切除-实体轮廓命令,如图1-2所示。此命令可以使用一个实体来切除另一个实体,用来切除的实体可以按一定的轨迹运动。测试过程中发现,这个命令频繁出错,切除失败,体验实在是太差了。下面对比了在该命令下使用方程式驱动曲线和…

后端学习笔记(八)--HTML

1.HTML ​ *编写网页的一门语言 ​ *HTML(HyperText Markup Language)&#xff1a;超文本标记语言 ​ *超文本&#xff1a;超越了文本的限制&#xff0c;比普通文本更强大。除了文字信息&#xff0c;还可以定义图片、音频、视频等内容 ​ *标记语言&#xff1a;由标签构成的…

代码随想录DAY18 - 二叉树 - 08/17

目录 二叉搜索树的最小绝对差 题干 思路和代码 方法一&#xff1a;求中序序列 方法二&#xff1a;递归法双指针法 方法三&#xff1a;迭代法双指针法 二叉搜索树中的众数 题干 思路和代码 方法一&#xff1a;求中序序列 方法二&#xff1a;递归法双指针中序遍历 ​编…

基于 Konva 实现Web PPT 编辑器(一)

前言 目前Web PPT编辑比较好的库有PPTist(PPTist体验地址)&#xff0c;是基于DOM 的渲染方案&#xff0c;相比 Canvas 渲染的方案&#xff0c;在复杂场景下性能会存在一定的差距。不过确实已经很不错了&#xff0c;本应用在一些实现思路、难点攻克上也参考了pptist的思想&#…

1:html的介绍与基础1

目录 1.1html的介绍 1.2html的基础1 1.2.1标题&#xff0c;头部与基本的格式怎么写 1.2.1.1标题与基本格式 1.2.1.2头部 1.2.2段落 1.2.3链接 1.2.3.1基本的网页链接 1.2.3.2图像链接 1.2.4注释 1.1html的介绍 HTML是一种标记语言&#xff0c;用于创建&#xff0c;设…

EmguCV学习笔记 VB.Net和C# 下的OpenCv开发

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 笔者的博客网址&#xff1a;https://blog.csdn.net/uruseibest 本教程将分为VB.Net和C#两个版本分别进行发布。 教程VB.net版本请…

高效同步与处理:ADTF流服务在自动驾驶数采中的应用

目录 一、ADTF 流服务 1、流服务源&#xff08;Streaming Source&#xff09; 2、流服务汇&#xff08;Streaming Sink&#xff09; 二、数据链路 1、数据管道&#xff08;Data Pipe&#xff09; 2、子流&#xff08;Substreams&#xff09; 3、触发管道&#xff08;Tri…

遥感之常用各种指数总结大全

目前在遥感领域基本各种研究领域都会用到各种各样的指数&#xff0c;如水体指数&#xff0c;植被指数&#xff0c;农业长势指数&#xff0c;盐分指数&#xff0c;云指数&#xff0c;阴影指数&#xff0c;建筑物指数&#xff0c;水质指数&#xff0c;干旱指数等等众多。 本文对上…

Qt第十五章 动画和状态机

文章目录 动画框架动画架构动画框架类QPropertyAnimation串行动画组QSequentialAnimationGroup并行动画组QPararallelAnimationGroupQPauseAnimationQTimeLine窗口动画下坠效果抖动效果透明效果 状态机QStateQStateMachine 动画框架 动画架构 动画框架类 类名描述QAbstractAn…