介绍
SPI总线由摩托罗拉公司
开发,是一种全双工同步串行总线
,由四个IO口组成:CS、SCLK、MISO、MOSI;通常用于CPU和外设之间进行通信,常见的SPI总线设备有:TFT LCD、QSPI FLASH、时钟模块、IMU等;NXP-MCXA153
开发板上集成了两路SPI总线,本次实验将重点介绍RT-Thread系统中SPI BSP驱动的移植过程
移植流程
以SPI0为例
① 在board里边添加相应的外设:配置spi0外设为复位状态、设置GPIO引脚功能
② 添加相应的Kconfig开关,用以指示相应的外设开启与关闭(本质是通过宏定义或者条件编译的方式)
③ 根据SDK_2_14_2_FRDM-MCXA153提供的spi示例工程编写spi总线驱动,需要实现几个关键的函数
- rt_hw_spi_init
- spi_configure
- spixfer
④ 添加相应的库文件依赖:fsl_lpspi.c、fsl_lpspi_edma.c
引脚对应关系
序号 | GPIO | function |
---|---|---|
1 | P1_3 | CS |
2 | P1_1 | SCLK |
3 | P1_2 | MISO |
4 | P1_0 | MOSI |
驱动文件
board.c
在rt_hw_board_init
函数里加入以下代码
edma_config_t userConfig = {0};
EDMA_GetDefaultConfig(&userConfig);
EDMA_Init(DMA0, &userConfig);
pin_mux.c
在BOARD_InitPins
函数里加入以下代码
#ifdef BSP_USING_SPI0
RESET_ReleasePeripheralReset(kLPSPI0_RST_SHIFT_RSTn);
const port_pin_config_t port1_0_pin56_config = {/* Internal pull-up/down resistor is disabled */
kPORT_PullDisable,
/* Low internal pull resistor value is selected. */
kPORT_LowPullResistor,
/* Fast slew rate is configured */
kPORT_FastSlewRate,
/* Passive input filter is disabled */
kPORT_PassiveFilterDisable,
/* Open drain output is disabled */
kPORT_OpenDrainDisable,
/* Low drive strength is configured */
kPORT_LowDriveStrength,
/* Normal drive strength is configured */
kPORT_NormalDriveStrength,
/* Pin is configured as LPSPI0_SDO */
kPORT_MuxAlt2,
/* Digital input enabled */
kPORT_InputBufferEnable,
/* Digital input is not inverted */
kPORT_InputNormal,
/* Pin Control Register fields [15:0] are not locked */
kPORT_UnlockRegister};
/* PORT1_0 (pin 56) is configured as LPSPI0_SDO */
PORT_SetPinConfig(PORT1, 0U, &port1_0_pin56_config);
const port_pin_config_t port1_1_pin57_config = {/* Internal pull-up/down resistor is disabled */
kPORT_PullDisable,
/* Low internal pull resistor value is selected. */
kPORT_LowPullResistor,
/* Fast slew rate is configured */
kPORT_FastSlewRate,
/* Passive input filter is disabled */
kPORT_PassiveFilterDisable,
/* Open drain output is disabled */
kPORT_OpenDrainDisable,
/* Low drive strength is configured */
kPORT_LowDriveStrength,
/* Normal drive strength is configured */
kPORT_NormalDriveStrength,
/* Pin is configured as LPSPI0_SCK */
kPORT_MuxAlt2,
/* Digital input enabled */
kPORT_InputBufferEnable,
/* Digital input is not inverted */
kPORT_InputNormal,
/* Pin Control Register fields [15:0] are not locked */
kPORT_UnlockRegister};
/* PORT1_1 (pin 57) is configured as LPSPI0_SCK */
PORT_SetPinConfig(PORT1, 1U, &port1_1_pin57_config);
const port_pin_config_t port1_2_pin58_config = {/* Internal pull-up/down resistor is disabled */
kPORT_PullDisable,
/* Low internal pull resistor value is selected. */
kPORT_LowPullResistor,
/* Fast slew rate is configured */
kPORT_FastSlewRate,
/* Passive input filter is disabled */
kPORT_PassiveFilterDisable,
/* Open drain output is disabled */
kPORT_OpenDrainDisable,
/* Low drive strength is configured */
kPORT_LowDriveStrength,
/* Normal drive strength is configured */
kPORT_NormalDriveStrength,
/* Pin is configured as LPSPI0_SDI */
kPORT_MuxAlt2,
/* Digital input enabled */
kPORT_InputBufferEnable,
/* Digital input is not inverted */
kPORT_InputNormal,
/* Pin Control Register fields [15:0] are not locked */
kPORT_UnlockRegister};
/* PORT1_2 (pin 58) is configured as LPSPI0_SDI */
PORT_SetPinConfig(PORT1, 2U, &port1_2_pin58_config);
const port_pin_config_t port1_3_pin59_config = {/* Internal pull-up/down resistor is disabled */
kPORT_PullDisable,
/* Low internal pull resistor value is selected. */
kPORT_LowPullResistor,
/* Fast slew rate is configured */
kPORT_FastSlewRate,
/* Passive input filter is disabled */
kPORT_PassiveFilterDisable,
/* Open drain output is disabled */
kPORT_OpenDrainDisable,
/* Low drive strength is configured */
kPORT_LowDriveStrength,
/* Normal drive strength is configured */
kPORT_NormalDriveStrength,
/* Pin is configured as LPSPI0_PCS0 */
kPORT_MuxAlt2,
/* Digital input enabled */
kPORT_InputBufferEnable,
/* Digital input is not inverted */
kPORT_InputNormal,
/* Pin Control Register fields [15:0] are not locked */
kPORT_UnlockRegister};
/* PORT1_3 (pin 59) is configured as LPSPI0_PCS0 */
PORT_SetPinConfig(PORT1, 3U, &port1_3_pin59_config);
#endif
board/Kconfig
加入SPI0相关配置
menuconfig BSP_USING_SPI
config BSP_USING_SPI
bool "Enable SPI"
select RT_USING_SPI
default y
if BSP_USING_SPI
config BSP_USING_SPI0
bool "Enable SPI0"
default
endif
drv_spi.c
spi驱动层修改如下
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-08-3 hywing The first version for MCXA
*/
#include "rtdevice.h"
#include "drv_spi.h"
#include "fsl_common.h"
#include "fsl_lpspi.h"
#include "fsl_lpspi_edma.h"
#define DMA_MAX_TRANSFER_COUNT (32767)
enum
{
#ifdef BSP_USING_SPI0
SPI1_INDEX,
#endif
};
struct lpc_spi
{
struct rt_spi_bus parent;
LPSPI_Type *LPSPIx;
clock_attach_id_t clock_attach_id;
clock_div_name_t clock_div_name;
clock_name_t clock_name;
DMA_Type *DMAx;
uint8_t tx_dma_chl;
uint8_t rx_dma_chl;
edma_handle_t dma_tx_handle;
edma_handle_t dma_rx_handle;
dma_request_source_t tx_dma_request;
dma_request_source_t rx_dma_request;
lpspi_master_edma_handle_t spi_dma_handle;
rt_sem_t sem;
char *name;
};
static struct lpc_spi lpc_obj[] =
{
#ifdef BSP_USING_SPI0
{
.LPSPIx = LPSPI0,
.clock_attach_id = kFRO12M_to_LPSPI0,
.clock_div_name = kCLOCK_DivLPSPI0,
.clock_name = kCLOCK_Fro12M,
.tx_dma_request = kDma0RequestLPSPI0Tx,
.rx_dma_request = kDma0RequestLPSPI0Rx,
.DMAx = DMA0,
.tx_dma_chl = 0,
.rx_dma_chl = 1,
.name = "spi0",
},
#endif
};
struct lpc_sw_spi_cs
{
rt_uint32_t pin;
};
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_uint32_t pin)
{
rt_err_t ret = RT_EOK;
struct rt_spi_device *spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
struct lpc_sw_spi_cs *cs_pin = (struct lpc_sw_spi_cs *)rt_malloc(sizeof(struct lpc_sw_spi_cs));
cs_pin->pin = pin;
rt_pin_mode(pin, PIN_MODE_OUTPUT);
rt_pin_write(pin, PIN_HIGH);
ret = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
return ret;
}
static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
{
rt_err_t ret = RT_EOK;
// struct lpc_spi *spi = RT_NULL;
// spi = (struct lpc_spi *)(device->bus->parent.user_data);
// ret = lpc_spi_init(spi->SPIx, cfg);
return ret;
}
static void LPSPI_MasterUserCallback(LPSPI_Type *base, lpspi_master_edma_handle_t *handle, status_t status, void *userData)
{
struct lpc_spi *spi = (struct lpc_spi *)userData;
rt_sem_release(spi->sem);
}
static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
int i;
lpspi_transfer_t transfer = {0};
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
struct lpc_spi *spi = (struct lpc_spi *)(device->bus->parent.user_data);
struct lpc_sw_spi_cs *cs = device->parent.user_data;
if (message->cs_take)
{
rt_pin_write(cs->pin, PIN_LOW);
}
transfer.dataSize = message->length;
transfer.rxData = (uint8_t *)(message->recv_buf);
transfer.txData = (uint8_t *)(message->send_buf);
// if(message->length < MAX_DMA_TRANSFER_SIZE)
if (0)
{
LPSPI_MasterTransferBlocking(spi->LPSPIx, &transfer);
}
else
{
uint32_t block, remain;
block = message->length / DMA_MAX_TRANSFER_COUNT;
remain = message->length % DMA_MAX_TRANSFER_COUNT;
for (i = 0; i < block; i++)
{
transfer.dataSize = DMA_MAX_TRANSFER_COUNT;
if (message->recv_buf) transfer.rxData = (uint8_t *)(message->recv_buf + i * DMA_MAX_TRANSFER_COUNT);
if (message->send_buf) transfer.txData = (uint8_t *)(message->send_buf + i * DMA_MAX_TRANSFER_COUNT);
LPSPI_MasterTransferEDMA(spi->LPSPIx, &spi->spi_dma_handle, &transfer);
rt_sem_take(spi->sem, RT_WAITING_FOREVER);
}
if (remain)
{
transfer.dataSize = remain;
if (message->recv_buf) transfer.rxData = (uint8_t *)(message->recv_buf + i * DMA_MAX_TRANSFER_COUNT);
if (message->send_buf) transfer.txData = (uint8_t *)(message->send_buf + i * DMA_MAX_TRANSFER_COUNT);
LPSPI_MasterTransferEDMA(spi->LPSPIx, &spi->spi_dma_handle, &transfer);
rt_sem_take(spi->sem, RT_WAITING_FOREVER);
}
}
if (message->cs_release)
{
rt_pin_write(cs->pin, PIN_HIGH);
}
return message->length;
}
static struct rt_spi_ops lpc_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer
};
int rt_hw_spi_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(lpc_obj); i++)
{
CLOCK_SetClockDiv(lpc_obj[i].clock_div_name, 1u);
CLOCK_AttachClk(lpc_obj[i].clock_attach_id);
lpc_obj[i].parent.parent.user_data = &lpc_obj[i];
lpc_obj[i].sem = rt_sem_create("sem_spi", 0, RT_IPC_FLAG_FIFO);
lpspi_master_config_t masterConfig;
LPSPI_MasterGetDefaultConfig(&masterConfig);
masterConfig.baudRate = 12 * 1000 * 1000;
masterConfig.pcsToSckDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U;
masterConfig.lastSckToPcsDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U;
masterConfig.betweenTransferDelayInNanoSec = 1000000000U / masterConfig.baudRate * 1U;
LPSPI_MasterInit(lpc_obj[i].LPSPIx, &masterConfig, CLOCK_GetFreq(lpc_obj[i].clock_name));
EDMA_CreateHandle(&lpc_obj[i].dma_tx_handle, lpc_obj[i].DMAx, lpc_obj[i].tx_dma_chl);
EDMA_CreateHandle(&lpc_obj[i].dma_rx_handle, lpc_obj[i].DMAx, lpc_obj[i].rx_dma_chl);
EDMA_SetChannelMux(lpc_obj[i].DMAx, lpc_obj[i].tx_dma_chl, lpc_obj[i].tx_dma_request);
EDMA_SetChannelMux(lpc_obj[i].DMAx, lpc_obj[i].rx_dma_chl, lpc_obj[i].rx_dma_request);
LPSPI_MasterTransferCreateHandleEDMA(lpc_obj[i].LPSPIx, &lpc_obj[i].spi_dma_handle, LPSPI_MasterUserCallback, &lpc_obj[i], &lpc_obj[i].dma_rx_handle, &lpc_obj[i].dma_tx_handle);
rt_spi_bus_register(&lpc_obj[i].parent, lpc_obj[i].name, &lpc_spi_ops);
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_spi_init);
SConscript
在Libraries/MCXA153/SConscript
文件里边加上以下代码
if GetDepend('BSP_USING_SPI'):
src += ['MCXA153/drivers/fsl_lpspi.c']
src += ['MCXA153/drivers/fsl_lpspi_edma.c']
测试用例
打开menuconfig使能spi0驱动
短接MISO和MOSI引脚(P1_0和P1_2)进行自发自收测试
测试程序
#include <rtthread.h>
#include "rtdevice.h"
#include "drv_spi.h"
#define SPI_BUS_NAME "spi0"
#define SPI_DEV_NAME "spi00"
static struct rt_spi_device *spi_device;
static void spi_sample(void)
{
rt_err_t result;
struct rt_spi_configuration cfg;
uint8_t tx_buf[] = "Hello RT-Thread!";
uint8_t rx_buf[sizeof(tx_buf)];
rt_base_t cs = 1*32+3;
rt_hw_spi_device_attach(SPI_BUS_NAME, SPI_DEV_NAME, cs);
/* »ñÈ¡SPIÉ豸 */
spi_device = (struct rt_spi_device *)rt_device_find(SPI_DEV_NAME);
if (!spi_device)
{
rt_kprintf("can't find %s device!\n", SPI_BUS_NAME);
}
/* ÅäÖÃSPIÉ豸 */
cfg.data_width = 8;
cfg.mode = RT_SPI_MASTER | RT_SPI_MODE_0 | RT_SPI_MSB;
cfg.max_hz = 12* 1000 * 1000;
/* ÉèÖÃSPIÉ豸 */
rt_spi_configure(spi_device, &cfg);
result = rt_spi_transfer(spi_device, tx_buf, rx_buf, sizeof(tx_buf));
if (result == sizeof(tx_buf))
{
rt_kprintf("Send: %s\n", tx_buf);
rt_kprintf("Received: %s\n", rx_buf);
}
else
{
rt_kprintf("spi transfer failed! error code: %d\n", result);
}
}
int main(void)
{
spi_sample();
return 0;
}
运行结果
总结
- 另外,你也可以安装
MCUXpresso Config Tools v16
,通过图形方式配置时钟树、GPIO复用 - 完整的BSP驱动代码可以在RT-Thread的仓库找到