LoRA是一种流行的微调大语言模型的手段,这是因为LoRA仅需在预训练模型需要微调的地方添加旁路矩阵。LoRA 的作者们还提供了一个易于使用的库 loralib,它极大地简化了使用 LoRA 微调模型的过程。这个库允许用户轻松地将 LoRA 层添加到现有的模型架构中,而无需深入了解其底层实现细节。这使得 LoRA 成为了一种非常实用的技术,既适合研究者也适合开发人员。下面给出了一个LoRA微调Bert模型的具体例子。
下图给出了一个LoRA微调Bert中自注意力矩阵
W
Q
W^Q
WQ的例子。如图所示,通过冻结矩阵
W
Q
W^Q
WQ,并且添加旁路低秩矩阵
A
,
B
A,B
A,B来进行微调。同理,使用LoRA来微调
W
K
W^K
WK也是如此。
我们给出了通过LoRA来微调Bert模型中自注意力矩阵的具体代码。代码是基于huggingface中Bert开源模型进行改造。Bert开源项目链接如下:
https://huggingface.co/transformers/v4.3.3/_modules/transformers/models/bert/modeling_bert.html
基于LoRA微调的代码如下:
# 环境配置
# pip install loralib
# 或者
# pip install git+https://github.com/microsoft/LoRA
import loralib as lora
class LoraBertSelfAttention(BertSelfAttention):
"""
继承BertSelfAttention模块
对Query,Value用LoRA进行微调
参数:
- r (int): LoRA秩的大小
- config: Bert模型的参数配置
"""
def __init__(self, r=8, *config):
super().__init__(*config)
# 获得所有的注意力的头数
d = self.all_head_size
# 使用LoRA提供的库loralib
self.lora_query = lora.Linear(d, d, r)
self.lora_value = lora.Linear(d, d, r)
def lora_query(self, x):
"""
对Query矩阵执行Wx + BAx操作
"""
return self.query(x) + F.linear(x, self.lora_query)
def lora_value(self, x):
"""
对Value矩阵执行Wx + BAx操作
"""
return self.value(x) + F.linear(x, self.lora_value)
def forward(self, hidden_states, *config):
"""
更新涉及到Query矩阵和Value矩阵的操作
"""
# 通过LoRA微调Query矩阵
mixed_query_layer = self.lora_query(hidden_states)
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
# 通过LoRA微调Value矩阵
value_layer = self.transpose_for_scores(self.lora_value(hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
# 通过LoRA微调Value矩阵
value_layer = self.transpose_for_scores(self.lora_value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
# 通过LoRA微调Value矩阵
value_layer = self.transpose_for_scores(self.lora_value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
if self.is_decoder:
past_key_value = (key_layer, value_layer)
# Query矩阵与Key矩阵算点积得到注意力分数
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class LoraBert(nn.Module):
def __init__(self, task_type, num_classes=None, dropout_rate=0.1, model_id="bert-base-cased",
lora_rank=8, train_biases=True, train_embedding=False, train_layer_norms=True):
"""
- task_type: 设计任务的类型,如:'glue', 'squad_v1', 'squad_v2'.
- num_classes: 分类类别的数量.
- model_id: 预训练好的Bert的ID,如:"bert-base-uncased","bert-large-uncased".
- lora_rank: LoRA秩的大小.
- train_biases, train_embedding, train_layer_norms: 这是参数是否需要训练
"""
super().__init__()
# 1.加载权重
self.model_id = model_id
self.tokenizer = BertTokenizer.from_pretrained(model_id)
self.model = BertForPreTraining.from_pretrained(model_id)
self.model_config = self.model.config
# 2.添加模块
d_model = self.model_config.hidden_size
self.finetune_head_norm = nn.LayerNorm(d_model)
self.finetune_head_dropout = nn.Dropout(dropout_rate)
self.finetune_head_classifier = nn.Linear(d_model, num_classes)
# 3.通过LoRA微调模型
self.replace_multihead_attention()
self.freeze_parameters()
def replace_self_attention(self, model):
"""
把预训练模型中的自注意力换成自己定义的LoraBertSelfAttention
"""
for name, module in model.named_children():
if isinstance(module, RobertaSelfAttention):
layer = LoraBertSelfAttention(r=self.lora_rank, config=self.model_config)
layer.load_state_dict(module.state_dict(), strict=False)
setattr(model, name, layer)
else:
self.replace_self_attention(module)
def freeze_parameters(self):
"""
将除了涉及LoRA微调模块的其他参数进行冻结
LoRA微调影响到的模块: the finetune head, bias parameters, embeddings, and layer norms
"""
for name, param in self.model.named_parameters():
is_trainable = (
"lora_" in name or
"finetune_head_" in name or
(self.train_biases and "bias" in name) or
(self.train_embeddings and "embeddings" in name) or
(self.train_layer_norms and "LayerNorm" in name)
)
param.requires_grad = is_trainable
peft库中包含了LoRA在内的许多大模型高效微调方法,并且与transformer库兼容。使用peft库对大模型flan-T5-xxl进行LoRA微调的代码例子如下:
# 通过LoRA微调flan-T5-xxl
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from peft import LoraConfig, get_peft_model, prepare_model_for_int8_training, TaskType
# 模型介绍:https://huggingface.co/google/flan-t5-xxl
model_name_or_path = "google/flan-t5-xxl"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path, load_in_8bit=True, device_map="auto")
peft_config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q", "v"], # 仅对Query,Value矩阵进行微调
lora_dropout=0.1,
bias="none",
task_type=TaskType.SEQ_2_SEQ_LM
)
model = get_peft_model(model, peft_config)
# 打印可训练的参数
model.print_trainable_parameters()