(A,B)---6*30*2---(0,1)(1,0)
收敛误差为7e-4,收敛199次取迭代次数平均值,
让A是4a1,4a2,…,4a16,B全是0得到迭代次数的顺序就是1,2,…,16.
但是如果让训练集A-B矩阵的高等于4得到顺序为
迭代次数 | 搜索难度 | |
1 | 4440.862 | 1.000194 |
2 | 11137.21 | 2.508381 |
3 | 13236.05 | 2.981092 |
4 | 13784.85 | 3.104695 |
9 | 23548.79 | 5.303781 |
5 | 24684.53 | 5.55958 |
10 | 26078.16 | 5.873459 |
6 | 27204.47 | 6.127133 |
7 | 28016.44 | 6.310008 |
11 | 28684.01 | 6.460363 |
12 | 31723.56 | 7.144946 |
8 | 33794.86 | 7.611455 |
14 | 35451.44 | 7.984559 |
15 | 40951.95 | 9.223413 |
13 | 42801.08 | 9.639883 |
16 | 55863.4 | 12.58185 |
当训练集A-B矩阵的高为5或6的时候得到的顺序都是1,2,…,16比如把这个顺序叫s2,只有当训练集A-B矩阵的高为4的时候才会有顺序1,2,3,4,9,5,10,6,7,11,12,8,14,15,13,16。把这个顺序叫做s1。
现在可以确认二维平面上的4点16个结构的顺序至少有两组。
这次用4点结构的s1标定3点结构的s2.
按结构加法有
3a1
13(3a1+1)=2*4a1+4a2+2*4a3+2*4a4+4*4a12+2*4a14
假设搜索难度有简单的加和性
(2*1+2.508+2*2.981+2*3.106+4*7.145+2*7.985)/13=4.71
3a2
6(3a2+1)=4a3+4a5+4*4a6
(2.981+5.56+4*6.127)/6=5.51
3a3
15(3a3+1)=2*4a1+4a2+4a3+3*4a5+2*4a7+4*4a8+2*4a11
(2*1+1*2.508+2.981+3*5.56+2*6.31+4*7.611+2*6.46)/15=5.34
3a4
15(3a4+1)=4a2+4a4+2*4a9+3*4a10+2*4a11+2*4a14+4*4a15
(2.508+3.105+2*5.304+3*5.873+2*6.46+2*7.985+4*9.223)/15=6.64
3a5
9(3a5+1)=4a2+2*4a7+2*4a9+4*4a13
(2.508+2*6.31+2*5.304+4*9.64)/9=7.14
3a6
6(3a6+1)=4a4+4a10+4*4a16
(3.105+5.873+4*12.58)/6=9.88
搜索难度 | 搜索难度 | 迭代次数 | |
1 | (2*1+2.508+2*2.981+2*3.106+4*7.145+2*7.985)/13 | 4.710153846 | 28392.17 |
2 | (2.981+5.56+4*6.127)/6 | 5.508166667 | 36372.48 |
3 | (2*1+1*2.508+2.981+3*5.56+2*6.31+4*7.611+2*6.46)/15 | 5.343533333 | 36629.86 |
4 | (2.508+3.105+2*5.304+3*5.873+2*6.46+2*7.985+4*9.223)/15 | 6.641466667 | 51425.59 |
5 | (2.508+2*6.31+2*5.304+4*9.64)/9 | 7.144 | 61047.4 |
6 | (3.105+5.873+4*12.58)/6 | 9.883 | 91182.79 |
把搜索难度画成图
除了第二点和第三点之间略有偏差,整体上和3点结构s2顺序已经很接近。
4点结构的s1顺序
迭代次数 | |||||
1 | 1 | - | 6*4*2*0-0*0*0*0 | 4440.862 | |
1 | - | - | 6*4*2*0-0*0*0*0 | 4440.862 | |
- | 1 | - | 6*4*2*0-0*0*0*0 | 4440.862 | |
- | - | - | 6*4*2*0-0*0*0*0 | 4440.862 | |
4440.862 | |||||
- | - | - | 0*6*1*4-0*0*0*0 | 11137.21 | |
1 | 1 | - | 0*6*1*4-0*0*0*0 | 11137.21 | |
- | - | 1 | 0*6*1*4-0*0*0*0 | 11137.21 | |
1 | - | - | 0*6*1*4-0*0*0*0 | 11137.21 | |
11137.21 | |||||
1 | - | - | 4*0*5*4-0*0*0*0 | 13236.05 | |
- | - | - | 4*0*5*4-0*0*0*0 | 13236.05 | |
1 | - | 1 | 4*0*5*4-0*0*0*0 | 13236.05 | |
1 | - | - | 4*0*5*4-0*0*0*0 | 13236.05 | |
13236.05 | |||||
1 | 1 | 1 | 7*2*0*0-0*0*0*0 | 13784.85 | |
- | 1 | - | 7*2*0*0-0*0*0*0 | 13784.85 | |
- | - | - | 7*2*0*0-0*0*0*0 | 13784.85 | |
- | - | - | 7*2*0*0-0*0*0*0 | 13784.85 | |
13784.85 | |||||
1 | - | - | 4*2*4*4-0*0*0*0 | 24684.53 | |
- | 1 | - | 4*2*4*4-0*0*0*0 | 24684.53 | |
1 | - | - | 4*2*4*4-0*0*0*0 | 24684.53 | |
1 | - | - | 4*2*4*4-0*0*0*0 | 24684.53 | |
24684.53 | |||||
- | - | 1 | 1*1*1*1-0*0*0*0 | 27204.47 | |
- | - | 1 | 1*1*1*1-0*0*0*0 | 27204.47 | |
- | - | 1 | 1*1*1*1-0*0*0*0 | 27204.47 | |
- | - | 1 | 1*1*1*1-0*0*0*0 | 27204.47 | |
27204.47 | |||||
- | 1 | - | 2*4*1*4-0*0*0*0 | 28016.44 | |
1 | - | - | 2*4*1*4-0*0*0*0 | 28016.44 | |
- | - | 1 | 2*4*1*4-0*0*0*0 | 28016.44 | |
1 | - | - | 2*4*1*4-0*0*0*0 | 28016.44 | |
28016.44 | |||||
- | 1 | - | 2*4*4*2-0*0*0*0 | 33794.86 | |
1 | - | - | 2*4*4*2-0*0*0*0 | 33794.86 | |
1 | - | - | 2*4*4*2-0*0*0*0 | 33794.86 | |
- | 1 | - | 2*4*4*2-0*0*0*0 | 33794.86 | |
33794.86 | |||||
- | - | - | - | 0*1*2*12-0*0*0*0 | 23548.79 |
- | - | - | 1 | 0*1*2*12-0*0*0*0 | 23548.79 |
- | - | 1 | - | 0*1*2*12-0*0*0*0 | 23548.79 |
1 | 1 | - | - | 0*1*2*12-0*0*0*0 | 23548.79 |
23548.79 | |||||
- | - | - | - | 0*0*1*14-0*0*0*0 | 26078.16 |
- | - | - | - | 0*0*1*14-0*0*0*0 | 26078.16 |
- | - | - | 1 | 0*0*1*14-0*0*0*0 | 26078.16 |
1 | 1 | 1 | - | 0*0*1*14-0*0*0*0 | 26078.16 |
26078.16 | |||||
- | - | - | 0*4*3*4-0*0*0*0 | 28684.01 | |
1 | - | - | 0*4*3*4-0*0*0*0 | 28684.01 | |
- | 1 | 1 | 0*4*3*4-0*0*0*0 | 28684.01 | |
1 | - | - | 0*4*3*4-0*0*0*0 | 28684.01 | |
28684.01 | |||||
- | - | - | 0*6*6*0-0*0*0*0 | 31723.56 | |
1 | 1 | - | 0*6*6*0-0*0*0*0 | 31723.56 | |
1 | 1 | - | 0*6*6*0-0*0*0*0 | 31723.56 | |
- | - | - | 0*6*6*0-0*0*0*0 | 31723.56 | |
31723.56 | |||||
- | - | - | 1 | 1*2*4*8-0*0*0*0 | 42801.08 |
- | - | 1 | - | 1*2*4*8-0*0*0*0 | 42801.08 |
- | 1 | - | - | 1*2*4*8-0*0*0*0 | 42801.08 |
1 | - | - | - | 1*2*4*8-0*0*0*0 | 42801.08 |
42801.08 | |||||
- | 1 | 1 | 3*0*0*6-0*0*0*0 | 35451.44 | |
- | - | - | 3*0*0*6-0*0*0*0 | 35451.44 | |
- | - | - | 3*0*0*6-0*0*0*0 | 35451.44 | |
1 | 1 | - | 3*0*0*6-0*0*0*0 | 35451.44 | |
35451.44 | |||||
- | - | - | - | 0*0*3*12-0*0*0*0 | 40951.95 |
- | - | - | - | 0*0*3*12-0*0*0*0 | 40951.95 |
- | - | 1 | 1 | 0*0*3*12-0*0*0*0 | 40951.95 |
1 | 1 | - | - | 0*0*3*12-0*0*0*0 | 40951.95 |
40951.95 | |||||
- | - | - | - | 0*0*0*15-0*0*0*0 | 55863.4 |
- | - | - | - | 0*0*0*15-0*0*0*0 | 55863.4 |
- | - | - | - | 0*0*0*15-0*0*0*0 | 55863.4 |
1 | 1 | 1 | 1 | 0*0*0*15-0*0*0*0 | 55863.4 |
55863.4 |