B树和B+树的插入、删除

news2025/1/8 9:25:16

1. B树

1.1 B树的定义

B树也称B-树,它是一颗多路平衡查找树。我们描述一颗B树时需要指定它的阶数,阶数表示了一个结点最多有多少个孩子结点,用字母m表示阶数。当m2时,就是我们常见的二叉搜索树。

一颗m阶的B树定义如下:

  • 每个结点最多有m-1个关键字。
  • 根结点最少可以只有1个关键字。
  • 非根结点至少有Math.ceil({m\over 2})-1个关键字。
  • 每个结点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于该结点,而右子树中的所有关键字都大于该结点。
  • 所有叶子结点都位于同一层,或者说根结点到每个叶子结点的长度都相同。

上图是一颗阶数为4B树。在实际应用中的B树的阶数m都非常大(通常大于100),所以即使存储大量的数据,B树的高度仍然比较小。每个结点中存储了关键字(key)和关键字对应的数据(value),以及孩子结点的指针。我们将一个key和其对应的value称为一个记录。为方便描述,除非特别说明,后续文中就用key来代替(key, value)键值对这个整体。在数据库中我们将B树(和B+树)作为索引结构,可以加快查询速速,此时B树中的key就表示键,而value表示了这个键对应的条目在硬盘上的逻辑地址。

1.2 B树的插入操作

插入操作是指插入一条记录,即(key, value)的键值对。如果B树中已存在需要插入的键值对,则用需要插入的value替换旧value。若B树不存在该key,则一定是在叶子结点中进行插入操作。

  1. 根据要插入的key的值,找到叶子结点并插入;
  2. 判断当前结点key的个数是否小于等于m-1,若满足则结束,否则进行第3步;
  3. 以结点中间的key为中心分裂成左右两部分,将这个中间的key插入到父结点中,让这个key的左侧指针指向分裂后的左半部分,key的右侧指针指向分裂后的右半部分,然后设置当前结点指向父结点(也就是key此时所在的结点),继续进行第3步;
  4. 下面以5B树为例,介绍B树的插入操作,结点最多有4key,最少有2key

a)在空树中插入39

此时根结点就一个key,此时根结点也是叶子结点


b)继续插入229741

根结点此时有4key


c)继续插入53

插入后超过了最大允许的关键字个数4,以key值为41为中心进行分裂,结果如下图所示,分裂后当前结点指针指向父结点,满足B树条件,插入操作结束。当阶数m为偶数时,需要分裂时就不存在排序恰好在中间的key,那么选择中间位置的前一个key或后一个key为中心进行分裂即可。


d)依次插入132140,同样会造成分裂,结果如下图所示。


e)依次插入3027, 333635342429,结果如下图所示。


f)插入key值为26的记录,插入后的结果如下图所示。

当前结点需要以27为中心分裂,并向父结点插入27,然后当前结点指向父结点,结果如下图示。


父(当前即根结点)结点插入27后导致父结点也需要分裂,分裂的结果如下图所示。

分裂后当前结点指向新的根,此时无需调整。


g)最后再依次插入key1728293132的记录,结果如下图所示。

在实现B树的代码中,为了使代码编写更加容易,我们可以将结点中存储记录的数组长度定义为m而非m-1,这样方便底层的结点由于分裂向上插入一个记录时,上层有多余位置暂存这个记录。同时,每个结点还可以存储它的父结点的引用,这样就不必编写递归程序。

一般来说,对于确定的m和确定类型的记录,结点大小是固定的,无论它实际存储了多少个记录。但是分配固定结点大小的方法会存在浪费的情况,比如key2829所在的结点,还有2key的位置没有使用,但已不可能再在此插入任何值了,因为这个结点的前序key是27,后继key30,所有整数值都用完了。

1.3 B树的删除操作

删除操作是指,根据key删除记录,如果B树中的记录中不存对应key的记录,则删除失败。

  1. 如果当前需要删除的key位于非叶子结点上,则用后继key(这里的后继key均指后继记录的意思)覆盖要删除的key,然后在后继key所在的子支中删除该后继key。后继key一定位于叶子结点上,这个过程和二叉搜索树删除结点的方式类似。删除这个记录后执行第2步;
  2. 该结点key个数大于等于Math.ceil({m\over 2})-1,结束删除操作,否则执行第3步;
  3. 如果兄弟结点key个数大于Math.ceil({m\over 2})-1,则在父结点与兄弟结点夹住的key下移到当前结点,兄弟结点中的一个key上移到父结点,删除操作结束;
  4. 否则,将父结点中的key下移与当前结点及它的兄弟结点中的key合并,形成一个新的结点。原父结点中的key的两个孩子指针就变成了一个孩子指针,指向这个新结点。然后当前结点的指针指向父结点,重复上第2步。

有些结点它可能即有左兄弟,又有右兄弟,那么我们任意选择一个兄弟结点进行操作即可。

下面以5B树为例,介绍B树的删除操作,5B树中,结点最多有4key,最少有2key


a)原始状态


b)在上面的B树中删除21,删除后结点中的关键字个数仍然大于等2,所以删除结束。


c)在上述情况下接着删除27。从上图可知27位于非叶子结点中,所以用27的后继替换它。图中可以看出,27的后继为28,我们用28替换27,然后在28(原27)的右孩子结点中删除28。删除后的结果如下图所示。

删除后发现,当前叶子结点的记录的个数小于2,而它的兄弟结点中有3个记录(当前结点还有一个右兄弟,选择右兄弟就会出现合并结点的情况,不论选哪一个都行,只是最后B树的形态会不一样而已),我们可以从兄弟结点中借取一个key。所以父结点中的28下移,兄弟结点中的26上移,删除结束。结果如下图所示。


d)在上述情况下接着32,结果如下图。

当删除后,当前结点中只key,而兄弟结点中也仅有2key。只能让父结点中的30下移和这两个孩子结点中的key合并,成为一个新的结点,当前结点的指针指向父结点。结果如下图所示。

当前结点key的个数满足条件,故删除结束。


e)上述情况下,我们接着删除key40的记录,删除后结果如下图所示。

同理,当前结点的记录数小于2,兄弟结点中没有多余key,所以父结点中的key下移,和兄弟(这里我们选择左兄弟,选择右兄弟也可以)结点合并,合并后的指向当前结点指针指向父结点。

同理,对于当前结点而言只能继续合并了,最后结果如下所示。

合并后结点当前结点满足条件,删除结束。

B+树

2.1 B+树的定义

各种资料上B+树的定义各有不同,一种定义方式是关键字个数和孩子结点数相同。这里我们采取维基百科上所定义的方式,即关键字个数比孩子结点个数小1,这种方式是和B树基本等价的。上图就是一颗阶数为4B+树。

除此之外B+树还有以下的要求。

  • B+树包含2种类型结点:内部结点(也称索引结点)和叶子结点。根结点本身既可以是内部结点,也可以是叶子结点。根结点的key个数最少可以只有1个;
  • B+树与B树最大的不同是内部结点不保存数据,只用于索引,所有的数据(或者说记录)都保存在叶子结点中;
  • mB+树表示了内部结点最多有m-1key(或者说内部结点最多有m个子树),阶数m同时限制了叶子结点最多存储m-1个记录;
  • 内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的所有Key都小于它,右子树中的key都大于等于它。叶子结点中记录也按照key大小排列;
  • 每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依key自小而大顺序链接。

2.2 B+树的插入操作

  1. 若为空树,创建一个叶子结点,然后将记录插入其中,此时这个叶子结点也是根结点,插入操作结束;
  2. 根据key值找到叶子结点,向这个叶子结点插入记录。插入后,当前结点key的个数小于等于m-1,则插入结束。否则将这个叶子结点分裂成左右两个叶子结点,左叶子结点包含前{m-1}\over 2个记录,右结点包含剩下记录,将第{​{m-1}\over 2} + 1个记录的key进位到父结点中(父结点一定是索引类型结点),父结点key左侧孩子指针向左结点,右侧孩子指针向右结点。将当前结点的指针指向父结点,然后执行第3步;
  3. 若当前非叶子结点key的个数不多于m-1,则插入结束。否则,将这个索引类型结点分裂成两个索引结点,左索引结点包含前{m-1}\over 2个key,右结点包含m - {​{m-1}\over 2}key,将第{​{m-1}\over 2} + 1key进位到父结点中,父结点的key左孩子指向左结点,父结点的key右孩子指向右结点。将当前结点的指针指向父结点,然后重复第3步。

下面是一颗5B+树的插入过程,5B+数的非根结点最少2key,最多4个key


a)空树中插入5


b)依次插入81015


c)插入16

插入16后超过了关键字的个数限制,所以要进行分裂。在叶子结点分裂时,分裂出来的左结点2个记录,右边3个记录,中间key成为索引结点中的key,分裂后当前结点指向父结点(根结点)。结果如下图所示。

当然还有另一种分裂方式,给左结点3个记录,右结点2个记录,此时索引结点中的key就变为15


d)插入17


e)插入18,插入后如下图所示

当前结点的关键字个数大于5,进行分裂。分裂成两个结点,左结点2个记录,右结点3个记录,16进到父结点(索引类型)中,将当前结点的指针指向父结点。

当前结点的关键字个数满足条件,插入结束。


f)插入若干数据后


g)在上图中插入7,结果如下图所示

当前结点的关键字个数超过4,需要分裂。左结点2个记录,右结点3个记录。分裂后关键字7进入到父结点中,将当前结点的指针指向父结点,结果如下图所示。

当前结点关键字个数超过4,需要继续分裂。左结点2个关键字,右结点2个关键字,16进入父结点中,将当前结点指向父结点,结果如下图所示。

当前结点的关键字个数满足条件,插入结束。

2.3 B+树的删除操作

如果叶子结点中没有相应的key,则删除失败。否则执行下面的步骤

  1. 删除叶子结点中对应的key。删除后若结点的key的个数大于等于{Math.ceil(m-1)\over 2}-1,删除操作结束,否则执行第2步;
  2. 若兄弟结点key有大于{Math.ceil(m-1)\over 2}-1,向兄弟结点借一个key,同时用借到的key替换父结点(指当前结点和兄弟结点共同的父结点)中的key,删除结束。否则执行第3步;
  3. 若兄弟结点中没有富余的key,则当前结点和兄弟结点合并成一个新的叶子结点,并删除父结点中的key(父结点中的这个key两边的孩子指针就变成了一个指针,正好指向这个新叶子结点),将当前结点指向父结点(必为索引结点),执行第4步(以后操作和B树完全一样,主要是为了更新索引结点);
  4. 若索引结点的key的个数大于等于{Math.ceil(m-1)\over 2}-1,则删除操作结束,否则执行第5步;
  5. 若兄弟结点有富余,父结点key下移,兄弟结点key上移,删除结束,否则执行第6步;
  6. 当前结点和兄弟结点及父结点下移key合并成一个新的结点。将当前结点指向父结点,重复第4步。

注意,通过B+树的删除操作后,索引结点中存在的key,不一定在叶子结点中存在对应的记录。

下面是一颗5B+树的删除过程,5B+数的结点最少2key,最多4key


a)初始状态


b)删除22,删除后结果如下图

删除后叶子结点中key的个数大于等于2,删除结束


c)删除15,删除后的结果如下图所示

删除后当前结点只有1key,不满足条件,而兄弟结点有3key,可以从兄弟结点借1key9的记录,同时更新将父结点中的关键字由10也变为9,删除结束。


d)删除7,删除后的结果如下图所示

当前结点关键字个数小于2,(左)兄弟结点中的也没有富余的关键字(当前结点还有个右兄弟,不过选择任意一个进行分析就可以了,这里我们选择了左边的),所以当前结点和兄弟结点合并,并删除父结点中的key,当前结点指向父结点。

此时当前结点的关键字个数小于2,兄弟结点的关键字也没有富余,所以父结点中的关键字下移,和两个孩子结点合并,结果如下图所示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1994895.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

“卖水人”的生意经,要比机器人厂商更懂机器人

技术公司的生存法则。 生态链中每个角色都有自己的生存法则。对于机器人产业链中的技术“卖水人”,它的核心生存法则除了要闷头搞技术,更重要的是要比机器人厂商更懂机器人,这不仅很大程度决定了自身的技术路线,更决定了能否切中…

labelme标注的图像分割json文件转图片格式

label标注的标签是json格式,会对选择的区域进行打点标记,所有的点围成不规则的多边形区域,中间的部分就是分割的区域 这里编写了python脚本,可以把json文件转为图片格式,这里是png格式 目标摆放如下 转化结果如下&…

论文精读1

Equivariant Pretrained Transformer for Unified Geometric Learning on Multi-Domain 3D Molecules 核心公式: 论文导图 创新在统一分子建模和块级去噪预训练。

vue3中 ref 和 reactive 的区别

相同:均是声明响应式对象。且声明的响应式对象是深层的 1. 数据类型不同:ref用于包装JavaScript基本类型的数据(如字符串、数字、布尔值等),而reactive可以用于包装JavaScript对象和数组等复杂类型的数据。 2.访问方式…

医疗器械维修行业的惊人真相!

在医疗领域,医疗器械维修行业有着不为人知的惊人真相。 其一,维修人才极度稀缺。医疗器械的技术不断革新,复杂程度日益提高,然而专业维修人员的数量增长却远远跟不上。这导致一些设备故障无法及时修复,影响医疗服务的…

消费企业如何实现对经销商的动态管理?包括哪些维度?

在数字化浪潮席卷全球的当下时代,消费企业正站在转型升级的十字路口。在这种背景下,传统的经销管理模式已经不能满足市场对于效率、透明度和个性化的需求。当前经销渠道从增量市场竞争转入存量市场竞争,消费企业需通过加速数字化转型来快速提…

软件测试行业到底有没有前景和出路?2024辞职后涨薪5K+,凭什么?

前言 软件测试工程师的工作要求: 文档评审,用例评审,需求评审; 测试用例设计,自动化测试脚本开发,测试架构设计、写作测试文档(测试计划、测试方案、测试用例等); 执行…

七夕来临,看鲜花商家如何通过小魔推短视频矩阵引爆流量

相信不少朋友都知道,前两天“秋天里的第一杯奶茶”这个热点又刷爆了朋友圈,“秋天的第一杯蜜雪”只用了短短1天时间,视频就已经收获10万赞、16万转发获得了强势围观! 明天8月10日就是农历的七夕了,而鲜花行业的商家&a…

【javaWeb技术】·外卖点餐小程序(脚手架学习1·数据库)

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀系统学javaWeb开发_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 【免费】项…

将PPT中的元素保存为高清图片

PPT制作流程图,思维导图或者演示图片非常方便,本文主要记录如何将一个在PPT中画好的图片导出为高清图片。 1.在ppt中设计图片 以我在PPT中画的图片为例,将所有元素选中,右键组合,成为一个整体 2.另存为增强型元文件 …

文件系统管理问题总结

文件系统的基本组成 1.什么是linux文件系统 Linux 最经典的⼀句话是:「⼀切皆⽂件」,不仅普通的⽂件和⽬录,就连块设备、管道、socket 等,也 都是统⼀交给⽂件系统管理的。 Linux ⽂件系统会为每个⽂件分配两个数据结构&#…

畅捷通基于Flink的实时数仓落地实践

摘要:本文整理自畅捷通总架构师、阿里云MVP专家郑芸老师在 Flink Forward Asia 2023 中闭门会上的分享。内容主要为以下四部分: 业务背景数仓建设具体案例未来展望 一、业务背景 畅捷通是用友旗下成员企业,一直持续专注于小微企业的数字化转…

七夕情人节有什么好物推荐?五款心动数码产品推荐。

转眼间,七夕情人节即将来临,这个浪漫的节日是表达爱意、传递心意的最佳时刻!为了让爱意不再迷茫,团团精心挑选了一份情人节约会好物清单。这些精选产品,我亲自试用,确信它们能触动心弦,传递深情…

html+css 实现hover 3D按钮特效

前言:哈喽,大家好,今天给大家分享htmlcss 绚丽效果!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目…

《向量数据库指南》——To B大型知识系统的多租设计

To B大型知识系统的多租设计 这类场景中,租户数量一般比较少。比如企业内多个独立的业务团队或部门,如果他们都在提供不同的知识库服务,那么对于数据库中台团队,每一个这样的业务团队或部门都是一个租户。 在向量数据库层面,中台团队需要根据业务复杂度为每个租户分…

儿童餐椅 亚马逊美国站ASTM认证步骤

本政策适用的儿童餐椅 儿童餐椅是一种供三岁以下儿童使用的独立座椅。座椅表面超出地面 15 英寸以上,可提高儿童所坐高度,通常于儿童进食时使用。儿童餐椅可由塑料、木材或金属制成,通常配有软垫座。儿童餐椅有带托盘和不带托盘的款式&#…

口碑最好的洗地机排名?洗地机十大排名公开揭晓!

随着现在洗地机逐渐走入大众的眼睛,很多人已经开始寻找合适的洗地机,但是因为市面上的品牌太多了,宣传的噱头也比较多,因此很多人都比较迷糊,不知道应该选择怎样的洗地机!本文将公开揭晓洗地机领域的十大排…

数学建模--蒙特卡洛算法之电子管更换刀片寿命问题

目录 1.电子管问题重述 2.电子管问题分析 3.电子管问题求解 4.刀片问题重述 5.刀片问题分析 6.刀片问题求解 1.电子管问题重述 某设备上安装有4只型号规格完全相同的电子管,已知电子管寿命服从100~200h之间的均匀分布. 只要有一个电子管…

P5677 [GZOI2017] 配对统计(线段树爆改莫队)

[GZOI2017] 配对统计 - 洛谷 贵州的省选,线段树代码太长了,直接莫队启动。 时间复杂度O(n sqrt(n)) 加了个奇偶优化。 先按块排左指针。 同一块内右指针按照块的编号奇偶性决定升序或者降序。 核心思路 拓展左右指针 或者…

【Linux】(32)详解命名管道 | 日志管理 | 进程池2.0

目录 1. 介绍 2. 理解 3.运用 3.1 简易通信 makefile comm.hpp server.cc (服务端,读取显示) client.cc (客户端,写入) 3.2 日志 log.hpp 1. 定义日志级别 2. 实现日志函数 可变参数 3. 日志输出管理 3…