八问八答,深入浅出搞懂Transformer内部运作原理

news2024/9/30 15:36:36

导读

同学们在学习Transformer时是否觉得难以理解或者很难理清其内部运作原理呢。本文将通过八个关键问题帮助大家搞懂Transformer内部工作原理,希望对大家有所帮助。

七年前,论文《Attention is all you need》提出了 transformer 架构,颠覆了整个深度学习领域。

如今,各家大模型都以 transformer 架构为基础,但 transformer 内部运作原理,仍是一个未解之谜。

去年,transformer 论文作者之一 Llion Jones 宣布创立人工智能公司 Sakana AI。近期,Sakana AI 发表了一篇题为《Transformer Layers as Painters》的论文,探究了预训练 transformer 中的信息流,并针对仅解码器和仅编码器冻结 transformer 模型进行了一系列实验。请注意,该研究没有对预训练模型进行任何类型的微调。

论文地址:https://arxiv.org/pdf/2407.09298v1

该研究认为 transformer 的内部机制(特别是中间层)可以类比画家作画流水线来理解。

作画流水线通常是将画布(输入)传递给一系列画家。有些画家擅长画鸟类,而另一些画家则擅长画轮子。每个画家从其下一级画家那里收到画布,然后其决定是否给画作添加一些笔画,或者只是将其传递给其上一级画家(使用剩余连接)。

这个类比并不是一个严格的理论,而是一个思考 transformer 层的工具。受这个类比的启发,该研究测试验证了一些假设:

  • 各层是否都在使用相同的表征空间?

  • 所有层都是必要的吗?

  • 中间层都执行相同的功能吗?

  • 层的顺序重要吗?

  • 这些层可以并行运行吗?

  • 对于某些任务来说,顺序是否比其他因素更重要?

  • 循环有助于层并行吗?

  • 哪些变体对模型性能影响最小?

该研究对预训练 LLM 进行了一系列实验,其中包括试验标准 transformer 执行策略的变化,并在仅解码器 (Llama) 和仅编码器 (BERT) 模型的各种基准上测量这些变化对模型性能的影响。

各层是否都在使用相同的表征空间?

为了回答不同层是否使用相同的表征空间,作者测试了 Transformer 在跳过特定层或切换相邻层的顺序时是否具有稳健性。例如,在 Llama2-7B 中,第 6 层通常期望接收第 5 层的输出。如果给第 6 层以第 4 层的输出,它是否会出现「灾难性」的行为?

在图 2 中,我们可以看到,除了第一层和最后几层之外,Llama2-7B 的各层对跳层或切换层都相当稳健。

该实验表明,中间层共享一个表征空间,且与「外围层」(第一层和最后几层)拥有不同的表征空间。为了进一步验证这一假设,作者效仿之前的研究,测量了基准中模型(Llama2-7B、Llama2-13B 和 BERT-Large)不同层的隐藏状态激活之间的平均余弦相似度。图 3 显示了所有中间层之间的一致性。

这表明该模型可能具有「开始」、「中间」和「结束」层的三个不同的表征空间。回答问题 1:是的,中间层似乎共享一个共同的表征空间。

所有层都是必要的吗?

为了进一步测试中间层的重定向空间是否真正共享(除了具有接近的余弦相似度之外),该研究尝试了「跳过层」,即将第 N 层的输出直接发送到第 N + M 层(其中 M > 1)的输入中,从而「跳过」M − 1 层,如图 1a 所示。该实验是为了看看第 N + M 层是否可以理解第 N 层的激活,尽管它仅根据从第 N + M − 1 层发来的输入进行训练。图 4 显示,Llama2-7B 和 BERT-Large 在许多基准测试上性能均出现适度下降。回答问题 2,是否所有层都是必要的:

不,至少可以删除一些中间层而不会发生灾难性故障。

中间层都执行相同的功能吗?

如果中间层都共享一个共同的表征空间,这是否意味着除此之外的中间层是多余的呢?为了测试这一点,研究者们重新运行了前一子节中的「跳过」实验,他们将中间层的权重替换为中心层的权重,有效地在被替换的每一层上循环 T - 2N + 1 次,其中 T 是总层数(Llama2-7B 为 32 层,BERT-Large 为 24 层)。

如图 5 所示,可以观察到,随着被替换层数的增加,模型在基准测试的得分迅速下降。从后文的图 11 看来,这种替换层的做法比研究者们尝试的其他方法都更糟糕。因此,研究者得出结论:中间层执行的是不同的功能,让中间层之间共享权重并不可行。

层的顺序重要吗?

之前的实验表明,中间层共享一个表示空间,但在该空间中负责不同的功能。下一个需要解决的问题是,这些功能的顺序有何意义。为了解决这个问题,研究者们设计了两组实验。首先,以与训练时相反的顺序来运行中间层。具体来说,取第 T - N 层的输出,将其输入到第 T - N - 1 层,然后将这一层的输出输入到第 T - N - 2 层,依此类推,一直到第 N 层,再将这一层的输出发送到后面的 T - N 层。在第二组实验中,研究者采用随机顺序运行中间层,并在 10 个种子值上取平均值。

图 6 和图 7 分别显示了反向和以随机顺序运行中间层的结果,模型在所有基础测试集中都显示出了逐渐下降的趋势。这也表明虽然层的顺序对模型来说有一定的重要性,但即使改变了顺序,这些层仍然能够发挥作用。

更有趣的是,随机打乱层的顺序比完全反过来效果更好。这可能是因为,随机打乱的顺序在某些方面保留了层之间的一些原有关系(即层 i 在层 j 之后,其中 i > j),而完全反过来则完全打破了这些关系。

这些层可以并行运行吗?

为了验证层本身存在比执行的顺序更重要,研究者们设计了一个实验,并行运行中间层,将它们的平均结果发送给最终的 N 层。

如图 8 所示,模型在所有基准测试中的表现均呈现了一种平缓下降趋势,然而,这种趋势并不适用于 GSM8K 中的数学应用题。

实验结果显示,大部分情况下这种方法都是有效的,只是一些复杂的数学题处理得不太好。这种并行处理方法相比直接跳过一些层,效果更好,但不如按反向顺序运行层的效果出色。基于此,研究者得出结论:并行运行层在一般情况下是可行的,但对于需要顺序逻辑理解的数学问题,这种方法可能不太适用。

对于某些任务来说,

顺序是否比其他因素更重要?

对于大多数经过「改造」的模型,在面对抽象推理(ARC)或数学推理(GSM8K)基准测试时,它们往往显示出最陡峭的下降趋势。这一现象可能源于逐步推理任务对于模型层级顺序的敏感度远高于那些主要依赖语义理解的常识性任务。与那些仅通过理解语义便能完成的任务不同,推理任务要求模型同时把握结构与含义。这种观察与模型在单次处理过程中可能进行一定程度的顺序依赖性推理的假设相吻合。

研究者使用了一个比喻来说明:如果画一幅由许多不同元素组成的拼贴画,那么画的顺序可能不那么重要;但如果是要画一幅精确的建筑场景,那么每一笔的顺序就变得非常重要了。据此,研究者得出了结论:数学和推理任务对模型层的顺序具有更高的依赖性,而对于那些主要依赖语义理解的任务,顺序的影响则相对较小。

循环有助于层之间并行吗?

沿用上一节中画画的的比喻,当画家在画一幅画时,不是一开始就画所有东西,而是先画一部分,比如车身,然后再根据这部分来添加其他的东西,比如车轮。在 AI 模型中,层就是所谓的画家,处理信息就是在画画,如果先得到了正确的信息,也就先画出了所谓的车身,那么它们就能更好地完成自己的工作,为画作添加车轮。

对于 transformer 而言,当给予适当的输入时,层可能只在前向传播中做出贡献,并非通过残差连接「传递」输入。如果情况确实如此,那么迭代上一个实验中的并行层应该比单次执行并行层更能提高模型的性能。基于此,研究者通过将并行层的平均输出反馈到同一层中进行固定次数的迭代来测试这一点。

图 9 展示了将并行层循环 3 次的结果。循环并行 3 次的结果显著优于单次迭代(并行层)。起始层 N 设定为 15(针对 Llama2-7B 模型)或 11(针对 BERT 模型)时,即处于每种情况的极左端点,仅有单一的层级受到影响。在这种特定情况下,三次循环并行的效果等同于单纯地将中间层重复三次。与此同时,对于这一点上的并行层而言,其性能与完整模型无异。

研究者们还针对不同的迭代次数重复了相同的实验。图 10 展示了 Llama2-7B 的性能随并行化层数 M 和迭代次数的变化情况。每个 M 的最高性能迭代次数用红框标出。除了 M=29 和 M=31(几乎并行化所有层)外,最佳迭代次数大致与并行化层数成线性比例。因此,研究者得出的结论是:最佳迭代次数与并行化层数成正比。

如何调整层,对模型性能的影响最小?

最后,在图 11 中,研究者们将所有实验中对 Transformer 的「改造」进行了比较,在一个图表上显示了所有基准测试的中位数或平均性 。

中间重复 —— 用相同数量的中间层副本替换中间层 —— 表现最差, 很快就降到了随机基线的性能。相反,循环并行和随机层顺序的影响最小。因此,研究者得出的结论是:重复单一层的影响最严重。随机化层顺序和循环并行的影响最小。

这些实验整体上显示出平缓的性能下降,但研究者仍然不清楚为什么这些层在大多数扰动下还能保持一定的稳健性,这个问题还需在未来的研究中进一步探讨。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范
第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署
第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建
第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1991486.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

KVM——虚拟机的复制与克隆

目录 一. 复制虚拟机 二. 虚拟机克隆 1. 使用 virt-clone 2. 使用 virt-manager(图形界面) 3. 使用 qemu-img (磁盘镜像克隆) 一. 复制虚拟机 配置文件路径:/etc/libvirt/qemu/*.xml 磁盘镜像文件路径&#…

【扒代码】regression_head.py

import torch from torch import nnclass UpsamplingLayer(nn.Module):# 初始化 UpsamplingLayer 类def __init__(self, in_channels, out_channels, leakyTrue):super(UpsamplingLayer, self).__init__() # 调用基类的初始化方法# 初始化一个序列模型,包含卷积层、…

LeetCode 7, 703, 287

文章目录 7. 整数反转题目链接标签思路反转操作反转的数的范围 代码 703. 数据流中的第 K 大元素题目链接标签思路代码 287. 寻找重复数题目链接标签思路代码 7. 整数反转 题目链接 7. 整数反转 标签 数学 思路 反转操作 反转实际上很简单,假设要反转数字 n…

数据结构之Map与Set(上)

找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程(ಥ_ಥ)-CSDN博客 所属专栏:数据结构(Java版) 目录 二叉搜索树 Map和Set的介绍与使用 Map的常用方法及其示例 Set的常用方法及其示例 哈希表…

客户管理系统平台(CRM系统)是什么?它的核心主要解决哪些问题?

客户管理系统平台CRM是什么?客户关系管理系统CRM的核心主要解决哪些问题? CRM系统不仅仅是一套软件,更是一种策略,一种管理理念和一种企业发展方向。它通过整合客户数据、优化业务流程、提升客户体验,帮助企业在激烈的…

K8s第三节:k8s1.23.1升级为k8s1.30.0

上回书说到我们使用了kubeadm安装了k8s1.23.1,但是在k8s1.24之前还是使用docker作为容器运行时,所以这一节我打算将我安装的k8s集群升级为1.30.0版本; 1、修改containerd 配置 因为我们安装的docker自带containerd,所以我们不需要重新安装con…

蓝凌EKP二次开发资料大全 完整蓝凌二次开发资料 蓝凌 EKP开发实战教程 蓝凌OA二次开发资料大全 蓝凌OA java开发快速入门

蓝凌EKP二次开发资料大全 完整蓝凌二次开发资料 蓝凌 EKP开发实战教程 蓝凌OA二次开发资料大全 记得两年前花了非常贵的费用去现场学习的资料,把这些开发技术文档分享出来,希望通过这个资料, 为大家学习开发大大减少时间。期待大家能快速上…

《UE5_C++多人TPS完整教程》学习笔记32 ——《P33 动画蓝图(Animation Blueprint)》

本文为B站系列教学视频 《UE5_C多人TPS完整教程》 —— 《P33 动画蓝图(Animation Blueprint)》 的学习笔记,该系列教学视频为 Udemy 课程 《Unreal Engine 5 C Multiplayer Shooter》 的中文字幕翻译版,UP主(也是译者…

Python实战:类

一、圆的面积、周长 class Circle:# 初始化一个类参数:rdef __init__(self,r):self.r r# 计算面积的方法def get_area(self):return 3.14*pow(self.r,2)# 计算周长的方法def get_perimeter(self):return 2*3.14*self.r#创建对象 r eval(input(请输入圆的半径&…

Vue 2 和 Vue 3 生命周期钩子

Vue 2 和 Vue 3 生命周期钩子 在 Vue.js 开发中,了解生命周期钩子对于编写有效的组件至关重要。Vue 2 和 Vue 3 在生命周期钩子上大致相同,但 Vue 3 的 Composition API 引入了一种新的方式来处理它们。这里我会概述两者的生命周期钩子,并指…

2024年8月7日(mysql主从 )

回顾 主服务器 [rootmaster_mysql ~]# yum -y install rsync [rootmaster_mysql ~]# tar -xf mysql-8.0.33-linux-glibc2.12-x86_64.tar [rootmaster_mysql ~]# tar -xf mysql-8.0.33-linux-glibc2.12-x86_64.tar.xz [rootmaster_mysql ~]# cp -r mysql-8.0.33-linux-glibc2.…

QT找不到编辑框

问题展示: 解决办法:ALT0 然后我的变成了这种: 解决办法:文件系统改变成项目:

DNTR——F

文章目录 AbstractIntroductionContribution Related WorkAdvancements in Feature Pyramid Networks (FPNs)Coarse-to-Fine Image Partitioning in Drone Imagery DetectionDevelopments in Loss Function Approaches for Tiny Object DetectionR-CNN for Small Object Detect…

大炼模型进入尾声,“失眠”的欧洲和日本能否扳回一局?

大数据产业创新服务媒体 ——聚焦数据 改变商业 2022年末,ChatGPT-3.5的惊艳亮相,瞬间引爆了全球范围内的生成式AI(GenAI)热潮。 这场现代版的"淘金热"迅速在科技领域蔓延,尤其是在全球两大科技强国——中国…

简单分享下python打包手机app的apk

Python 把python程序打包成apk的完整步骤 1. 引言 在移动应用市场蓬勃发展的今天,开发人员常常需要将自己的Python程序打包成APK文件,以便在Android设备上运行。本文将详细介绍将Python程序打包成APK的完整步骤。 2. 准备工作 在开始打包前&#xff0c…

全网最详解LVS(Linux virual server)

目录 一、LVS(Linux virual server)是什么? 二、集群和分布式简介 2.1、集群Cluster 2.2、分布式 2.3、集群和分布式 三、LVS运行原理 3.1、LVS基本概念 3.2、LVS集群的类型 3.2.1 nat模式 3.2.2 DR模式 3.2.3、LVS工作模式总结 …

RSYSLOG收到华为防火墙日志差8小时的解决方法

RSYSLOG收到华为防火墙日志差8小时 这个问题其实不关Rsyslog配置的事,只要修改华为墙的配置就好 处理方法: info-center loghost 172.18.6.91 language Chinese local-time 在华为web界面添加ip是不会添加local-time这个参数的, 需要在命令…

sqli-labs第二关详解

首先让id1,正常显示,接着尝试and 11和and 12 and 11正常,and 12不正常 所以可以判断是数字型注入,使用order by 判断列数,发现有三个字段 使用union语句,找出能显示信息的地方 接下来就是找出数据库名称和版…

Leetcode75-7 除自身以外数组的乘积

没做出来 本来的思路是遍历一遍得到所有乘积和然后除就行 但是题目不能用除法 答案的思路 for(int i0;i<n;i) //最终每个元素其左右乘积进行相乘得出结果{res[i]*left; //乘以其左边的乘积left*nums[i];res[n-1-i]*right; //乘以其右边的乘积right*nums[n-1-i]…

搭建 Web 群集Haproxy

案例概述 Haproxy 是目前比较流行的一种群集调度工具&#xff0c;同类群集调度工具有很多&#xff0c;如 LVS 和Nginx。相比较而言&#xff0c;LVS 性能最好&#xff0c;但是搭建相对复杂;Nginx 的upstream模块支持群集功能&#xff0c;但是对群集节点健康检查功能不强&#xf…