一篇教会搭建ELK日志分析平台

news2025/1/20 5:44:22

日志分析的概述

  • 日志分析是运维工程师解决系统故障,发现问题的主要手段
  • 日志主要包括系统日志、应用程序日志和安全日志
  • 系统运维和开发人员可以通过日志了解服务器软硬件信息、检查配置过程中的错误及错误发生的原因
  • 经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误

日志分析的作用

  • 分析日志时刻监控系统运行的状态
  • 分析日志来定位程序的bug
  • 分析日志监控网站的访问流量
  • 分析日志可以知道哪些sql语句需要优化

主要收集工具

  • 日志易:国内一款监控、审计、权限管理,收费软件

  • splunk:按流量收费,国外软件,主要三个部件组成(Indexer、Search Head、Forwarder)

    • Indexder提供数据的存储,索引,类似于elasticsearch的作用
    • Search Head负责搜索,客户接入,从功能上看,一部分是kibana的UI是运行,在Search Head上的,提供所有的客户端可视化功能,还有一部分,是提供分布式的搜索功能,具有Elasticsearch部分功能
    • Forwarder负责数据接入,类似Logstash或者filebeat
  • ELK:海量日志分析平台(Elasticsearch、logstash、kibana),开源且在国内被广泛应用

集中式日志系统主要特点

动作功能
收集能够采集多种来源的日志数据
传输能够稳定的把日志传数据传输到中央系统
存储安全的存储日志数据
分析可以支持UI分析
警告能够提供错误报告

采集日志分类

维度举例
代理层Nginx、HAproxy…
web层Nginx、httpd、tomcat、Java…
数据库层MySQL、Redis、Elasticsearch、openGauss…
系统层message、secure

ELK概述

  • ELK是一个开源的数据分析平台,由三个开源项目Elasticsearch、Logstash和Kibana组成,因此被称为ELK

  • ELK主要用于处理和分析大量的日志数据,支持实时搜索、数据可视化和分析

    • Elasticsearch是一个分布式搜索引擎和分析引擎,能够实现实时搜索和分析大规模的数据集
    • Logstash是一个数据收集、处理和转换工具,能够从不同来源收集、处理和传输数据
    • Kibana是一个数据可视化工具,能够通过仪表盘、图形和地图等方式展示数据
    • ELK 三个组件相互配合,能够构建一个强大的、可扩展的日志分析平台,支持数据的快速检索、可视化和分析。
  • 初级版ELK
    在这里插入图片描述

  • 终极版ELK

在这里插入图片描述

  • 高级版ELK
    在这里插入图片描述

ELK收集日志的两种形式

  • 不修改源日志的格式:而是通过logstash的grok方式进行过滤清洗,将原始无规则的日志转换为规则的日志
    • 优点:不用修改原始日志输出格式,直接通过logstash的grok方式进行过滤分析,好处是对线上业务系统无任何影响
    • 缺点:logstash的grok方式在高压力情况下会成为性能瓶颈如果要分析的日志量超大时,日志过滤分析可能阻塞正常的日志输出;因此,在使用logstash时,能不用grok尽量不使用grok过滤功能。
  • 修改源日志输出格式:按照需要的日志格式输出规则日志,logstash只负责日志的收集和传输,不对日志做任何的过滤清洗。
    • 优点:因为已经定义好了需要的日志输出格式, logstash只负责日志的收集和传输,这样就大大减轻了logstash的负担,可以更高效的收集和传输日志。
    • 缺点:需要事先定义好日志的输出格式,这可能有一定工作量,但目前常见的web服务器例如httpd、Nginx等都支持自定义日志输出格式。

搭建ELK平台

  • Elasticsearch 官网:https://www.elastic.co/cn/elasticsearch

    • Elasticsearch是一个基于Lucene库的分布式搜索引擎和数据分析引擎,能够实现实时搜索和分析大规模的数据集,支持文本、数字、地理位置等多种类型的数据检索和分析。Elasticsearch是一个开源的、高度可扩展的平台,能够处理海量的数据,并支持分布式的数据存储和处理。Elasticsearch的主要特点包括:

    • 分布式搜索引擎:Elasticsearch能够对海量的数据进行快速的搜索和查询,并支持实时搜索。

    • 分布式数据存储:Elasticsearch能够将数据分散存储在多个节点上,以提高数据的可用性和可靠性。

    • 多数据类型支持:Elasticsearch支持多种数据类型,包括文本、数字、日期、地理位置等。

    • 实时数据分析:Elasticsearch能够对数据进行实时的聚合、过滤和分析,并支持数据可视化。

    • 可扩展性:Elasticsearch能够扩展到数百个节点,处理PB级别的数据。

    • 开源:Elasticsearch是一个开源的软件,源代码可以公开获取和修改。 Elasticsearch广泛应用于企业搜索、日志分析、安全分析和商业智能等领域。它提供了丰富的API和工具,包括RESTful API、Java API和Python API等,方便开发人员集成和使用。

  • Logstash 文档地址:https://www.elastic.co/guide/en/logstash/current/getting-started-with-logstash.html

  • Logstash 是一个开源的数据收集、处理和转换工具,能够从不同来源收集、处理和传输数据。,主要用于处理和分析大量的日志数据,支持多种数据源和格式,包括文本文件、数据库、日志文件、消息队列等。Logstash能够实现以下功能:

    • 数据收集:Logstash能够从不同的数据源收集数据,并支持多种数据格式,包括JSON、CSV、XML等。

    • 数据处理:Logstash能够对收集到的数据进行处理和转换,例如过滤、分析、标准化等。

    • 数据传输:Logstash能够将处理后的数据传输到目标位置,例如Elasticsearch、Kafka、Redis等。

    • 插件扩展:Logstash提供了丰富的插件,方便用户扩展和定制功能。

    • 实时数据处理:Logstash能够实现实时数据处理,支持流式数据处理。 Logstash是一个高度可扩展的工具,能够处理大量的数据,并支持分布式部署。它能够与Elasticsearch、Kibana、Beats等工具集成,构建一个强大的、可扩展的数据分析平台。Logstash提供了丰富的文档和社区支持,方便用户学习和使用。

  • Logstash工作原理

在这里插入图片描述
如上图,Logstash的数据处理过程主要包括:Inputs, Filters, Outputs 三部分, 另外在Inputs和Outputs中可以使用Codecs对数据格式进行处理。这四个部分均以插件形式存在,用户通过定义pipeline配置文件,设置需要使用的input,filter,output, codec插件,以实现特定的数据采集,数据处理,数据输出等功能

(1)Inputs:用于从数据源获取数据,常见的插件如file, syslog, redis, beats 等

(2)Filters:用于处理数据如格式转换,数据派生等,常见的插件如grok, mutate, drop, clone, geoip等

(3)Outputs:用于数据输出,常见的插件如elastcisearch,file, graphite, statsd等

(4)Codecs:Codecs不是一个单独的流程,而是在输入和输出等插件中用于数据转换的模块,用于对数据进行编码处理,常见的插件如json,multiline

  • Logstash核心概念
    • Pipeline:包含了input—filter-output三个阶段的处理流程、插件生命周期管理、队列管理
    • Logstash Event:数据在内部流转时的具体表现形式
      • 数据在input 阶段被转换为Event,在 output被转化成目标格式数据
      • Event 其实是一个Java Object,在配置文件中,对Event 的属性进行增删改查
    • Codec (Code / Decode):将原始数据decode成Event,将Event encode成目标数据

在这里插入图片描述

  • Kibana 文档地址:https://www.elastic.co/guide/cn/kibana/current/install.html

  • Kibana是一个数据可视化工具,能够通过仪表盘、图形和地图等方式展示数据。主要用于展示和分析从Elasticsearch中获取的数据。Kibana能够实现以下功能:

    • 数据可视化:Kibana能够通过仪表盘、图形和地图等方式展示数据,支持多种数据类型和格式。

    • 数据查询:Kibana能够实现对Elasticsearch中存储的数据进行查询和搜索。

    • 仪表盘管理:Kibana能够创建、管理和共享仪表盘,方便用户展示和分享数据。

    • 可视化插件:Kibana提供了丰富的可视化插件,方便用户扩展和定制功能。

    • 数据分析:Kibana能够实现对数据进行聚合、过滤和分析,支持实时数据处理。 Kibana的主要优点包括易用性、可扩展性和丰富的功能。它能够与Elasticsearch、Logstash、Beats等工具集成,构建一个强大的、可扩展的数据分析平台。Kibana提供了丰富的文档和社区支持,方便用户学习和使用。

  • 环境准备

    • 使用模板机克隆elk并配置如下参数
主机IP地址网关DNS配额
elk192.168.8.111/24192.168.8.254192.168.8.2541CPU2G内存
[root@template ~]# hostnamectl set-hostname elk						#配置主机名
[root@elk ~]# nmcli connection modify ens160 ipv4.method manual ipv4.addresses 192.168.8.111/24 ipv4.gateway 192.168.8.254 ipv4.dns 192.168.8.254 connection.autoconnect yes 										  #配置入网参数
[root@elk ~]# nmcli connection up ens160 							#激活网卡

安装部署docker

开启路由转发,docker是通过虚拟交换机来进行通讯的,需要开启路由转发的功能

[root@elk ~]# echo "net.ipv4.ip_forward = 1" >> /etc/sysctl.conf 
[root@elk ~]# sysctl -p              		#sysctl -p 让配置立刻生效(否则需要重启虚拟机)

2024-AI大模型Java全链路工程师环境资料/第四模块/docker文件夹上传至虚拟机elk的/root

[root@docker-0001 ~]# dnf remove podman					#卸载冲突的软件包
[root@docker-0001 ~]# dnf remove runc
[root@docker-0001 ~]# cd /root/docker
[root@docker-0001 docker]# dnf -y localinstall *.rpm	#安装docker

添加镜像加速器

  • 使用华为云的镜像加速器,每个人的都不一样
[root@elk ~]# vim /etc/docker/daemon.json
[root@elk ~]# vim /etc/docker/daemon.json
{
    "registry-mirrors": ["这里配置镜像仓库加速器地址"],
    "insecure-registries":[]
}
[root@elk ~]# systemctl restart docker 
[root@elk ~]# docker info

安装部署Elasticsearch

[root@elk ~]# docker network create -d bridge elk		#创建网络
[root@elk ~]# docker network ls							#查看网络
[root@elk ~]# docker search elasticsearch				#搜索镜像
[root@elk ~]# docker pull elasticsearch:7.12.1			#下载镜像elasticsearch:7.12.1
[root@elk ~]# docker images 							#查看镜像
# 运行 elasticsearch
[root@elk ~]# docker run -d --name es --net elk -P -e "discovery.type=single-node" elasticsearch:7.12.1

# 进入容器查看配置文件路径
[root@elk ~]# docker exec -it es /bin/bash
[root@f84bda6f8389 elasticsearch] cd config

[root@f84bda6f8389 config]# ls
elasticsearch.keystore  jvm.options.d           role_mapping.yml  users_roles
elasticsearch.yml       log4j2.file.properties  roles.yml
jvm.options             log4j2.properties       users

[root@f84bda6f8389 config]# pwd
/usr/share/elasticsearch/config
# 在 config 中可看到 elasticsearch.yml 配置文件,
# 再执行 pwd 可以看到当前目录为: /usr/share/elasticsearch/config,所以退出容器,执行文件的拷贝
[root@f84bda6f8389 config]# exit
# 将容器内的配置文件拷贝到 /usr/local/elk/elasticsearch/ 中
[root@elk ~]#  mkdir -p /usr/local/elk/elasticsearch
[root@elk ~]#  docker cp es:/usr/share/elasticsearch/config/elasticsearch.yml /usr/local/elk/elasticsearch

[root@elk ~]# vim /usr/local/elk/elasticsearch/elasticsearch.yml
#此处省略1万字...在最后一行下方添加
http.cors.enabled: true
http.cors.allow-origin: "*"

# 注意:这里要修改文件的权限为可写,否则进行挂载后,在外部修改配置文件,容器内部的配置文件不会更改
# 同时,创建 data 目录进行挂载。
# 修改文件权限
[root@elk ~]# chmod 666 /usr/local/elk/elasticsearch/elasticsearch.yml
[root@elk ~]# mkdir -p /usr/local/elk/elasticsearch/data
[root@elk ~]# chmod -R 777 /usr/local/elk/elasticsearch/data
#重新运行容器并挂载
[root@elk ~]# docker rm -f es						#删除测试容器es
# 运行新的容器
[root@elk ~]# docker run -d --name es \
--net elk \
-p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
--privileged=true \
-v /usr/local/elk/elasticsearch/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /usr/local/elk/elasticsearch/data:/usr/share/elasticsearch/data \
elasticsearch:7.12.1

[root@elk ~]# docker ps

浏览器访问地址:http://192.168.8.111:9200/

在这里插入图片描述

安装ElasticSearch-head(可选)

  • 说明:ElasticSearch-head是 ES的可视化界面,是为了方便后面调试时看日志有没成功输入到 ES 用的,非必须安装的项目,也可跳过此步。

拉取镜像

[root@elk ~]# docker pull mobz/elasticsearch-head:5

运行容器

[root@elk ~]# docker run -d --name es_admin --net elk -p 9100:9100 mobz/elasticsearch-head:5
[root@elk ~]# docker ps

页面无数据问题

  • 如果打开页面之后节点、索引等显示完全,但是数据浏览中无数据显示,那么我们还需要改一个配置文件,这是因为 ES 6 之后增加了请求头严格校验的原因(我们装的是 7.12.1 版本):
[root@elk ~]#  docker cp es_admin:/usr/src/app/_site/vendor.js ./
[root@elk ~]#  vim vendor.js
#6886行:contentType: "application/json;charset=UTF-8"
#7573行: contentType === "application/json;charset=UTF-8"
# 改完后再将配置文件 copy 回容器,不需重启,直接刷新页面即可。

[root@elk ~]# docker cp vendor.js es_admin:/usr/src/app/_site/

测试

浏览器访问地址:http://192.168.8.111:9100/
在这里插入图片描述

安装Kibana

root@localhost ~]# docker search kibana
[root@elk ~]# docker pull kibana:7.12.1

# 注意: -e “ELASTICSEARCH_HOSTS=http://es:9200” 表示连接刚才启动的 elasticsearch 容器,
# 因为在同一网络(elk)中,地址可直接填 容器名+端口,即 es:9200, 也可以填 http://192.168.138.174:9200,即 http://ip:端口。
[root@elk ~]# docker run -d --name kibana --net elk -P -e "ELASTICSEARCH_HOSTS=http://es:9200" -e "I18N_LOCALE=zh-CN" kibana:7.12.1	#运行容器
#将容器内kibana的配置文件拷贝出来
[root@elk ~]# mkdir -p /usr/local/elk/kibana/
[root@elk ~]# docker cp kibana:/usr/share/kibana/config/kibana.yml /usr/local/elk/kibana/
[root@elk ~]# chmod 666 /usr/local/elk/kibana/kibana.yml

# 拷贝完成后,修改该配置文件,主要修改 elastissearch.hosts 并新增 i18n.locale 配置:
# 1. es 地址改为刚才安装的 es 地址,因容器的隔离性,这里最好填写 http://ip:9200
# 2. kibana 界面默认是英文的,可以在配置文件中加上 i18n.locale: zh-CN(注意冒号后面有个空格)
# 这样有了配置文件,在启动容器时就不用通过 -e 指定环境变量了
# 注意:
# 如果使用挂载配置文件的方式启动的话,elasticsearch.hosts 这需填写 http://ip:9200,而不能使用容器名了,否则后面 kibana 连接 es 会失败。
[root@elk ~]# vim /usr/local/elk/kibana/kibana.yml
# 注意这个ip是docker容器内部的IP,不是虚拟机的,可以使用 docker inspect es来查看
elasticsearch.hosts: [ "http://172.18.0.2:9200" ]
i18n.locale: zh-CN
#删除原来未挂载的容器
[root@elk ~]# docker rm -f kibana

#启动容器并挂载
[root@elk ~]# docker run -d --name kibana -p 5601:5601 -v /usr/local/elk/kibana/kibana.yml:/usr/share/kibana/config/kibana.yml --net elk kibana:7.12.1

浏览器访问地址:http://192.168.8.111:9100/
在这里插入图片描述

测试

  • 开始使用 Kibana 前,需要告诉 Kibana 您想要探索的 Elasticsearch 索引。第一次访问 Kibana 时,会提示您定义一个 index pattern(索引模式) 匹配一个或多个索引。这就是初次使用 Kibana 时所有需要配置的。任何时候都可以在 Management 页面增加索引模式。

  • 默认情况下,Kibana 会连接运行在 localhost 上的 Elasticsearch 实例。如果需要连接不同的 Elasticsearch实例,可以修改 kibana.yml 配置文件中的 Elasticsearch URL 配置项并重启 Kibana。如果在生产环境节点上使用 Kibana

  • 设置您想通过 Kibana 访问的 Elasticsearch 索引:

  • 浏览器中指定端口号5601来访问 Kibana UI 页面。例如, localhost:5601 或者 http://YOURDOMAIN.com:5601

在这里插入图片描述

  • 指定一个索引模式来匹配一个或多个 Elasticsearch 索引名称。默认情况下,Kibana 会认为数据是通过 Logstash 解析送进 Elasticsearch 的。这种情况可以使用默认的 logstash-* 作为索引模式。星号 (*) 匹配0或多个索引名称中的字符。如果 Elasticsearch 索引遵循其他命名约定,请输入一个恰当的模式。该模式也可以直接用单个索引的名称。

  • 如果您想做一些基于时间序列的数据比较,可以选择索引中包含时间戳的字段。Kibana 会读取索引映射,列出包含时间戳的所有字段。如果索引中没有基于时间序列的数据,则禁用 Index contains time-based events 选项。

  • 点击 Create 增加索引模式。默认情况下,第一个模式被自动配置为默认的。当索引模式不止一个时,可以通过点击 Management > Index Patterns 索引模式题目上的星星图标来指定默认的索引模式。
    全部设置完毕!Kibana 连接了 Elasticsearch 的数据。展示了一个匹配到的索引的字段只读列表。

浏览器访问地址:http://192.168.8.111:5601/
在这里插入图片描述

Docker 安装 LogStash

  • 拉取镜像并拷贝配置
[root@elk ~]# docker pull logstash:7.12.1
[root@elk ~]# docker run -d -P --name logstash --net elk logstash:7.12.1

# 拷贝数据
[root@elk ~]# mkdir -p /usr/local/elk/logstash/
[root@elk ~]# docker cp logstash:/usr/share/logstash/config /usr/local/elk/logstash/
[root@elk ~]# docker cp logstash:/usr/share/logstash/data /usr/local/elk/logstash/
[root@elk ~]# docker cp logstash:/usr/share/logstash/pipeline /usr/local/elk/logstash/

#文件夹赋权
[root@elk ~]# chmod -R 777 /usr/local/elk/logstash/
  • 修改相应配置文件

  • 修改 logstash/config 下的 logstash.yml 文件,主要修改 es 的地址(可通过 docker inspect es查看地址):

[root@elk ~]# vim /usr/local/elk/logstash/config/logstash.yml
http.host: "0.0.0.0"
xpack.monitoring.elasticsearch.hosts: [ "http://172.18.0.2:9200" ]

修改 logstash/pipeline 下的 logstash.conf 文件:

[root@elk ~]# vim /usr/local/elk/logstash/pipeline/logstash.conf

input {
  tcp {
    mode => "server"
    host => "0.0.0.0"  # 允许任意主机发送日志
    port => 5044
    codec => json_lines    # 数据格式
  }
}

output {
  elasticsearch {
      hosts  => ["http://172.18.0.2:9200"]   # ElasticSearch 的地址和端口
      index  => "elk"         # 指定索引名
      codec  => "json"
  }
  stdout {
    codec => rubydebug
  }
}

启动容器并挂载

#注意先删除之前的容器
[root@elk ~]# docker rm -f logstash

# 启动容器并挂载
[root@elk ~]# docker run -d --name logstash --net elk \
--privileged=true \
-p 5044:5044 -p 9600:9600 \
-v /usr/local/elk/logstash/data/:/usr/share/logstash/data \
-v /usr/local/elk/logstash/config/:/usr/share/logstash/config \
-v /usr/local/elk/logstash/pipeline/:/usr/share/logstash/pipeline \
logstash:7.12.1

项目地址:https://gitee.com/houyworking/elk.git

注意:该项目已经搭建好,只需要把对应 resource 下的 log/logback-springxml文件中的 <destination></destination>标签中 logstash 的地址换成对应自己的即可

创建springboot应用

这个比较简单,主要就是几个配置文件:

pom文件如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.tedu</groupId>
    <artifactId>elk</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>elk</name>
    <description>elk</description>
    <properties>
        <java.version>1.8</java.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <spring-boot.version>2.6.13</spring-boot.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>

        <dependency>
            <groupId>net.logstash.logback</groupId>
            <artifactId>logstash-logback-encoder</artifactId>
            <version>6.6</version>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>
    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-dependencies</artifactId>
                <version>${spring-boot.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.8.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <version>${spring-boot.version}</version>
                <configuration>
                    <mainClass>com.tedu.elk.ElkApplication</mainClass>
                    <skip>true</skip>
                </configuration>
                <executions>
                    <execution>
                        <id>repackage</id>
                        <goals>
                            <goal>repackage</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

创建一个TestController,每次调用接口,都会打印日志

package com.tedu.elk.controller;


import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.UUID;

@RestController
public class TestController {
    private final static Logger logger = LoggerFactory.getLogger(TestController.class);

    @GetMapping("/index")
    public String index() {
        String uuid = UUID.randomUUID().toString();
        logger.info("TestController info " + uuid);
        return "hello elk " + uuid;
    }
}

在 resource 下创建 log/logback-springxml 文件,这里我们主要填写 ip:端口,关于标签则看个人使用情况修改。

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <include resource="org/springframework/boot/logging/logback/base.xml" />
    <appender name="LOGSTASH" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
        <destination>192.168.8.111:5044</destination>
        <!-- 日志输出编码 -->
        <encoder charset="UTF-8" class="net.logstash.logback.encoder.LogstashEncoder">
            <providers>
                <timestamp>
                    <timeZone>UTC</timeZone>
                </timestamp>
                <pattern>
                    <pattern>
                        {
                        <!--es索引名称 -->
                        "index":"elk",
                        <!--应用名称 -->
                        "appname":"${spring.application.name}",
                        <!--打印时间 -->
                        "timestamp": "%d{yyyy-MM-dd HH:mm:ss.SSS}",
                        <!--线程名称 -->
                        "thread": "%thread",
                        <!--日志级别 -->
                        "level": "%level",
                        <!--日志名称 -->
                        "logger_name": "%logger",
                        <!--日志信息 -->
                        "message": "%msg",
                        <!--日志堆栈 -->
                        "stack_trace": "%exception"
                        }
                    </pattern>
                </pattern>
            </providers>
        </encoder>
    </appender>
    <root level="INFO">
        <appender-ref ref="LOGSTASH" />
        <appender-ref ref="CONSOLE" />
    </root>
</configuration>

最后修改 application.yml 文件:

server:
  port: 8080

logging:
  config: classpath:log/logback-spring.xml

查看 es-head

在这里插入图片描述
在这里插入图片描述

查看Kibana

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
测试:调用接口 http://localhost:8080/index
再次查看 Kibana ,已经显示了在代码中打印的日志:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1989652.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Date类型的字段序列化成JSON字符串

我们发现收到的响应结果里面有一个参数为&#xff1a; 我们收到的时间字符串格式是由JSON序列化框架来决定的。 spring将JAVA数据类型的序列和反序列化为JSON字符串是依赖jackson(com.fasterxml.jackson.core:jackson-core)库来实现的。 Date类型的字段在序列化成JSON字符串时…

【人工智能】人工智能与机器学习的相关介绍

文章目录 人工智能的发展历程人工智能与机器学习关系图谱数据处理机器学习ML和深度学习DL的区别人工智能按照学习方式划分监督学习算法无监督学习算法总结 人工智能的发展历程 重要的时间点了解一下&#xff1a; 早在1950年人工智能就已经开始兴起 1997年deep blue战胜了人类国…

天津美术学院2024级专升本新生开学报道须知

天津美术学院2024级新生入学须知 亲爱的新同学&#xff1a; 祝贺你成为天津美术学院的新成员&#xff0c;开启新的求学历程&#xff01;为方便新生入学&#xff0c;现将有关事宜通知如下&#xff1a; 一、报到安排 1.报到时间&#xff1a;2024年9月6日上午8&#xff1a;30—…

MYSQL的引擎、清空数据的两种方式

目录 1.MYSQL引擎介绍 1.1MySQL的引擎作用&#xff1a; 1.2 MySQL的3类引擎 1.3 MyISAM和InnoDB的区别 1.4设定引擎 2. 清空数据有两种不同的方式 2.1 区别 1.MYSQL引擎介绍 MySQL有多种引擎&#xff0c;能执行create table、select等命令&#xff0c;在数据量不多时…

二十九、MongoDB(1)

&#x1f33b;&#x1f33b; 目录 一、MongoDB简介1.1 什么是 MongoDB1.2 MongoDB特点1.3 MongoDB 体系结构 二、下载与安装2.1 MongoDB下载2.2 在Linux 上的安装2.2.1 安装前的准备2.2.2 开始安装2.2.3 测试软链接启动 2.3 在windows上的安装 三、基本增删改查操作3.1 选择或创…

lvs防火墙mark标记解决调度问题

实验环境是在之前部署DR模式集群的基础上做的&#xff0c;参考如下 部署DR模式集群 以http和https为例&#xff0c;当我们在webserver中同时开放80和443端口&#xff0c;那么默认控制是分开轮询的&#xff0c;就会出现了一个轮询错乱的问题&#xff1a; 当第一次访问80被轮询…

浅谈基础的图算法——Tarjan求强联通分量算法(c++)

文章目录 强联通分量SCC概念例子有向图的DFS树代码例题讲解[POI2008] BLO-Blockade题面翻译题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 思路AC代码 【模板】割点&#xff08;割顶&#xff09;题目背景题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示…

【论文分享】测量城市夜间活力及其与城市空间结构的关系:一种数据驱动的方法

近年来&#xff0c;夜间活力作为反映城市经济和生活质量的重要指标受到关注。本次我们给大家带来一篇SCI论文的全文翻译。该论文采用了数据驱动的方法来测量夜间活力&#xff0c;并探索了其与城市空间结构的关系。该论文派生的洞见可以帮助制定空间策略&#xff0c;以增强夜间活…

微信小程序 - 自定义底部菜单栏

微信小程序底部菜单栏是可以通过自定义来实现的。主要涉及&#xff1a;新建组件、编写组件代码、设置样式、配置导航栏、在页面中引用。自定义底部导航栏可以创建出符合项目设计需求效果&#xff0c;实现个性化的页面切换功能。 如下图效果&#xff0c;为比较常见的中间突出半圆…

2-58 基于matlab的图像处理 GUI 程序

基于matlab的图像处理 GUI 程序&#xff0c;功能包括裁剪、 旋转和翻转图像。 更改曝光、 对比度和饱和度&#xff0c; 黑白、 灰度等常见处理效果。程序已调通&#xff0c;可直接运行。 2-58 图像处理 GUI 程序 - 小红书 (xiaohongshu.com)

同享人力资源管理系统-TXEHR V15 hdlUploadFile.ashx 文件上传致RCE漏洞复现

0x01 产品简介 同享人力资源管理系统(TXEHR V15)是一款专为现代企业设计的人力资源管理软件解决方案,旨在通过先进的信息化手段提升企业人力资源管理的效率与水平。该系统集成了组织人事、考勤管理、薪资核算、招聘配置、培训发展、绩效管理等核心模块,并提供了灵活的配置…

大数据-41 Redis 类型集合(2) bitmap位操作 geohash空间计算 stream持久化消息队列 Z阶曲线 Base32编码

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; HadoopHDFSMapReduceHiveFlumeSqoopZookeeperHBaseRedis &#xff08;正在更新&#xff09; 章节内容 上一…

高校实验室预约系统的设计与实现-计算机毕业设计源码58031

摘要 随着信息技术的不断发展&#xff0c;高校实验室资源的管理和利用愈发重要。为了提高实验室资源的利用率和管理效率&#xff0c;我们设计并实现了一款基于Spring Boot框架的高校实验室预约系统。 本系统旨在为学生提供一个便捷、高效的途径来预约实验室资源&#xff0c;并为…

html+css+js网页设计星巴克作业2个页面(带js)

htmlcssjs网页设计 星巴克作业2个页面&#xff08;带js&#xff09; 网页作品代码简单&#xff0c;可使用任意HTML编辑软件&#xff08;如&#xff1a;Dreamweaver、HBuilder、Vscode 、Sublime 、Webstorm、Text 、Notepad 等任意html编辑软件进行运行及修改编辑等操作&#…

Linux系统驱动(九)IO模型---异步通知IO模型

文章目录 一、概念二、异步通知IO模型驱动实现&#xff08;一&#xff09;异步通知IO模型实现1. fcntl(fd,F_GETFL)调用流程2. fcntl(fd,F_SETFL,flags|FASYNC)3. fcntl(fd,F_SETOWN,getpid()) &#xff08;二&#xff09;驱动层提供异步通知模型1. 驱动层中实现异步通知IO模型…

基于QT实现的简易WPS(已开源)

一、开发工具及开源地址&#xff1a; 开发工具&#xff1a;QTCreator &#xff0c;QT 5 开源地址&#xff1a; GitHub - Whale-xh/WPS_official: Simple WPS based on QTSimple WPS based on QT. Contribute to Whale-xh/WPS_official development by creating an acc…

【JavaEE初阶】定时器

&#x1f4d5; 引言 定时器是什么&#xff1f; 定时器也是软件开发中的一个重要组件. 类似于一个 “闹钟”. 达到一个设定的时间之后, 就执行某个指定好的代码 定时器是一种实际开发中非常常用的组件.比如网络通信中, 如果对方 500ms 内没有返回数据, 则断开连接尝试重连.比如…

CTFHUB-web-RCE-过滤目录分隔符

开启题目 从源码发现管道符被过滤&#xff0c;使用分号 &#xff1b;分隔符&#xff0c;拼接执行注入&#xff0c;发现了 flag 的可疑文件 127.0.0.1;ls 查看 flag_is_here&#xff0c;发现有一个flag_12069946857.php 127.0.0.1;ls flag_is_here 查看flag_12069946857.php&a…

react项目中使用redux和reduxjs/toolkit案例

1、安装依赖 npm i react-redux reduxjs/toolkit2、在store/modules文件夹中新建todo.js &#xff08;billSlice.js&#xff09; // 账单列表 import { createSlice } from reduxjs/toolkit import axios from axiosconst billStore createSlice({name: billStore,// 数据状态…

零基础学习Python(五)

1. 数据描述符与非数据描述符 首先&#xff0c;描述符只能作用于类属性&#xff0c;如果将描述符作用于对象属性&#xff0c;则不会生效。 class D:def __get__(self, instance, owner):print("~get")class C:def __init__(self):self.x D() 应该将D对象赋值给类C…