2024最新Mysql事务原理与优化最佳实践

news2025/1/23 2:04:48

概述

我们的数据库一般都会并发执行多个事务,多个事务可能会并发的对相同的一批数据进行增删改查操作,可能就会导致我们说的脏写、脏读、不可重复读、幻读这些问题。

这些问题的本质都是数据库的多事务并发问题,为了解决多事务并发问题,数据库设计了事务隔离机制、锁机制、MVCC多版本并发控制隔离机制、日志机制,用一整套机制来解决多事务并发问题。接下来的,我们会深入讲解这些机制,让大家彻底理解数据库内部的执行原理。

事务及其ACID属性

事务是一组操作要么全部成功,要么全部失败,目的是为了保证数据最终的一致性。

事务具有以下4个属性,通常简称为事务的ACID属性。

  • 原子性(Atomicity) :当前事务的操作要么同时成功,要么同时失败。原子性由undo log日志来实现。
  • 一致性(Consistent) :使用事务的最终目的,由其它3个特性以及业务代码正确逻辑来实现。
  • 隔离性(Isolation) :在事务并发执行时,他们内部的操作不能互相干扰。隔离性由MySQL的各种锁以及MVCC机制来实现。
  • 持久性(Durable) :一旦提交了事务,它对数据库的改变就应该是永久性的。持久性由redo log日志来实现。

并发事务处理带来的问题

更新丢失(Lost Update)或脏写

  当两个或多个事务选择同一行数据修改,有可能发生更新丢失问题,即最后的更新覆盖了由其他事务所做的更新。

脏读(Dirty Reads)

  事务A读取到了事务B已经修改但尚未提交的数据

不可重读(Non-Repeatable Reads)

  事务A内部的相同查询语句在不同时刻读出的结果不一致

幻读(Phantom Reads)

  事务A读取到了事务B提交的新增数据

事务隔离级别

“脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。

隔离级别

脏读(Dirty Read)

不可重复读(NonRepeatable Read)

幻读(Phantom Read)

读未提交(Read uncommitted)

可能

可能

可能

读已提交(Read committed)

不可能

可能

可能

可重复读(Repeatableread)

不可能

不可能

可能

可串行化

(Serializable)

不可能

不可能

不可能

数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上“串行化”进行,这显然与“并发”是矛盾的。

同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读"和“幻读”并不敏感,可能更关心数据并发访问的能力。

查看当前数据库的事务隔离级别: show variables like 'tx_isolation';

设置事务隔离级别:set tx_isolation='REPEATABLE-READ';

Mysql默认的事务隔离级别是可重复读,用Spring开发程序时,如果不设置隔离级别默认用Mysql设置的隔离级别,如果Spring设置了就用已经设置的隔离级别

事务隔离级别案例分析

CREATE TABLE `account` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `balance` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('lilei', '450');
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('hanmei', '16000');
INSERT INTO `test`.`account` (`name`, `balance`) VALUES ('lucy', '2400');

读未提交

(1)打开一个客户端A,并设置当前事务模式为read uncommitted(未提交读),查询表account的初始值:

set tx_isolation='read-uncommitted';

(2)在客户端A的事务提交之前,打开另一个客户端B,更新表account:

(3)这时,虽然客户端B的事务还没提交,但是客户端A就可以查询到B已经更新的数据:

(4)一旦客户端B的事务因为某种原因回滚,所有的操作都将会被撤销,那客户端A查询到的数据其实就是脏数据

(5)在客户端A执行更新语句update account set balance = balance - 50 where id =1,lilei的balance没有变成350,居然是400,是不是很奇怪,数据不一致啊,如果你这么想就太天真了,在应用程序中,我们会用400-50=350,并不知道其他会话回滚了,要想解决这个问题可以采用读已提交的隔离级别.

3、读已提交

(1)打开一个客户端A,并设置当前事务模式为read committed(未提交读),查询表account的所有记录:set tx_isolation='read-committed';

 

(2)在客户端A的事务提交之前,打开另一个客户端B,更新表account: 

(3)这时,客户端B的事务还没提交,客户端A不能查询到B已经更新的数据,解决了脏读问题: 

(4)客户端B的事务提交

(5)客户端A执行与上一步相同的查询,结果 与上一步不一致,即产生了不可重复读的问题

4、可重复读

这个隔离级别记住一句话就能理解:可重复读隔离级别在事务开启的时候,第一次查询是查的数据库里已提交的最新数据,这时候全数据库会有一个快照(当然数据库并不是真正的生成了一个快照,这个快照机制怎么实现的后面课程会详细讲),在这个事务之后执行的查询操作都是查快照里的数据,别的事务不管怎么修改数据对当前这个事务的查询都没有影响,但是当前事务如果修改了某条数据,那当前事务之后查这条修改的数据就是被修改之后的值,但是查其它数据依然是从快照里查,不受影响。

(1)打开一个客户端A,并设置当前事务模式为repeatable read,查询表account的所有记录:

        set tx_isolation='repeatable-read';

(2)在客户端A的事务提交之前,打开另一个客户端B,更新表account并提交

(3)在客户端A查询表account的所有记录,与步骤(1)查询结果一致,没有出现不可重复读的问题

(4)在客户端A,接着执行update account set balance = balance - 50 where id = 1,balance没有变成400-50=350,lilei的balance值用的是步骤2中的350来算的,所以是300,数据的一致性倒是没有被破坏。可重复读的隔离级别下使用了MVCC(multi-version concurrency control)机制,select操作是快照读(历史版本);insert、update和delete是当前读(当前版本)。

(5)重新打开客户端B,插入一条新数据后提交

(6)在客户端A查询表account的所有记录,没有查出新增数据,所以没有出现幻读

(7)验证幻读

在客户端A执行update account set balance=888 where id = 4;能更新成功,再次查询能查到客户端B新增的数据

5、串行化

(1)打开一个客户端A,并设置当前事务模式为serializable,查询表account的初始值:

        set tx_isolation='serializable';

(2)打开一个客户端B,并设置当前事务模式为serializable,更新相同的id为1的记录会被阻塞等待,更新id为2的记录可以成功,说明在串行模式下innodb的查询也会被加上行锁,如果查询的记录不存在会给这条不存在的记录加上锁(这种是间隙锁,后面会详细讲)。

如果客户端A执行的是一个范围查询,那么该范围内的所有行包括每行记录所在的间隙区间范围都会被加锁。此时如果客户端B在该范围内插入数据都会被阻塞,所以就避免了幻读。

这种隔离级别并发性极低,开发中很少会用

事务问题定位

#查询执行时间超过1秒的事务,详细的定位问题方法后面讲完锁课程后会一起讲解
SELECT
	* 
FROM
	information_schema.innodb_trx 
WHERE
	TIME_TO_SEC( timediff( now( ), trx_started ) ) > 1;
 
 #强制结束事务
 kill 事务对应的线程id(就是上面语句查出结果里的trx_mysql_thread_id字段的值)

大事务的影响

  • 并发情况下,数据库连接池容易被撑爆
  • 锁定太多的数据,造成大量的阻塞和锁超时
  • 执行时间长,容易造成主从延迟
  • 回滚所需要的时间比较长
  • undo log膨胀
  • 容易导致死锁

事务优化

  • 将查询等数据准备操作放到事务外
  • 事务中避免远程调用,远程调用要设置超时,防止事务等待时间太久
  • 事务中避免一次性处理太多数据,可以拆分成多个事务分次处理
  • 更新等涉及加锁的操作尽可能放在事务靠后的位置
  • 能异步处理的尽量异步处理
  • 应用侧(业务代码)保证数据一致性,非事务执行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1988386.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在java中通过subString方法来截取字符串中的文本

1、subString()常规用法可以通过下标来进行获取,在java中是从0开始,前包括后不包括。 String str “Hello Java World!”; 用法一: substring(int beginIndex) 返回从起始位置(beginIndex)至字符串末尾…

供应链库存管理面临什么问题?全面解析安全库存和周转库存!

在当今这个快速变化的商业世界中,供应链管理已成为企业获取竞争优势的核心领域。库存管理,作为供应链中的关键环节,直接关系到企业的成本控制、客户服务水平以及市场响应速度。然而,面对市场竞争的加剧和客户需求的多变&#xff0…

事务性邮件调用接口如何配置灵活调用策略?

事务性邮件调用接口性能怎么优化?如何使用接口调用? 如何配置灵活调用策略,不仅可以提升邮件发送的效率和可靠性,还能增强用户体验。AokSend将详细介绍事务性邮件调用接口的配置方法和策略,以便企业在实际应用中取得最…

深度学习读书笔记(1)--机器学习、人工智能、深度学习的关系

声明:本文章是根据网上资料,加上自己整理和理解而成,仅为记录自己学习的点点滴滴。可能有错误,欢迎大家指正。 阅读的书籍主要为《UnderstandingDeepLearning》《动手学深度学习》 1956 年提出 AI 概念,短短3年后&…

【初阶数据结构题目】14.随机链表的复制

随机链表的复制 点击链接做题 思路: 浅拷贝:拷贝值 深拷贝:拷贝空间 在原链表的基础上继续复制链表置random指针复制链表和原链表断开 代码: /*** Definition for a Node.* struct Node {* int val;* struct Node *next…

【开发踩坑】windows查看jvm gc信息

windows查看jvm gc信息 EZ 找出java进程PID 控制面板----搜索任务管理器---- 任务管理器----搜索 java----详细信息 这里PID是4856 cmd jstat gc面板 reference: jstat命令

【Redis】缓存三大问题与缓存一致性问题

缓存三大问题 缓存穿透 缓存穿透是指用户查询的数据在缓存和数据库中都不存在,导致每次请求都会直接落到数据库上,增加数据库负载。 解决方案 1)参数校验 一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于…

【letcod-c++】128.最长连续序列

一、题目 二、分析 第一想法是像“242字母异位词”那样用哈希数组,但是这个数组元素的范围比较广,元素又比较分散,用数组太浪费空间,不合适。 于是考虑用哈希set(unordered_set),这个时候忽然想到前几天学习到set它能自动排序且自…

MySQL笔记(九):存储引擎

一、介绍 二、演示 Memory的使用场景: 例如网吧,用户再次上线时会更新状态 #表类型和存储引擎-- 查看所有的存储引擎SHOW ENGINES; -- 1、innodb 支持事务,外键,行级锁-- 2、myisam CREATE TABLE t31(id INT,name VARCHAR(32)) …

十二、享元模式

文章目录 1 基本介绍2 案例2.1 Digit 接口2.2 Color 枚举2.3 BigDigit 类2.4 DigitFactory 类2.5 Client 类2.6 Client 类的测试结果2.7 总结 3 各角色之间的关系3.1 角色3.1.1 Flyweight ( 抽象享元 )3.1.2 ConcreteFlyweight ( 具体享元 )3.1.3 UnsharedFlyweight ( 非享元 )…

2023/8/7 英语每日一段

There is unintended usefulness in this gentle enforcement of empathy. A mere news story makes it easy to deploy the defensive mechanism social scientists call “othering” which dismisses the victim, freak or dupe. But if it’s someone you have watched or …

文件上传绕过最新版安全狗

本文来源无问社区,更多实战内容,渗透思路可前往查看http://www.wwlib.cn/index.php/artread/artid/9960.html http分块传输绕过 http分块传输⼀直是⼀个很经典的绕过⽅式,只是在近⼏年分块传输⼀直被卡的很死,很多waf都开始加 …

数据科学 - 数据可视化(持续更新)

1. 前言​​​​​​​ 数据可视化能够将复杂的数据集转化为易于理解的图形、图表或图像。这种直观的表现形式使得人们能够更快地理解数据的分布、趋势、异常值以及数据之间的关系,从而更深入地洞察数据背后的信息。 数据可视化在数据分析和决策制定过程中具有不可…

【LLM基础知识】LLMs-Attention知识总结笔记v4.0

Attention机制 【1】简要介绍Attention机制 提出Attention的论文**:**Attention Is All You Need 论文地址:https://arxiv.org/pdf/1706.03762.pdf 提出Attention的背景:RNN处理序列数据时,token是逐个喂给模型的。比如在a3的位…

C++:map容器的使用

一、map的使用介绍 map文档介绍 1.1 map的模版参数 Key:键值对中Key的类型 T:键值对中value的类型 Compare:比较器的类型,map中的元素是按照Key来进行比较的,缺省情况(不传参数时)按照小于来…

健康读物:浮毛带来的危害竟这么大?去浮毛宠物空气净化器分享

前两天去我朋友家玩,进他家扑面而来的浮毛让我觉得呼吸都困难了不少,朋友说也有打扫,空气中的浮毛是真没辙,而且他觉得浮毛那么大又进不了肺部,对健康没啥危害,顶多吃几口猫毛,就没有处理。于是…

2024年7月国产数据库大事记-墨天轮

本文为墨天轮社区整理的2024年7月国产数据库大事件和重要产品发布消息。 目录 2024年7月国产数据库大事记 TOP102024年7月国产数据库大事记(时间线)产品/版本发布兼容认证代表厂商大事记排行榜新增数据库厂商活动相关资料 2024年7月国产数据库大事记 …

操作系统(七)深入理解Linux内核进程上下文切换

本文深入探讨了Linux内核中的进程上下文切换机制。作者韩传华首先解释了进程上下文的概念,包括虚拟地址空间和硬件上下文,并以Linux 5.0内核源码和ARM64架构为例进行讲解。文章详细介绍了进程上下文切换的两个主要过程:进程地址空间切换和处理…

PHP餐饮点餐系统小程序源码

🍽️餐饮新纪元:揭秘高效点餐系统的魅力✨ 📱一键下单,快捷就餐新体验🚀 在这个快节奏的时代,谁不渴望在忙碌之余享受一顿快速而美味的餐食呢?餐饮点餐系统的出现,就像是为我们的餐…

Spring Boot实战:拦截器

一.拦截器快速入门 1.1了解拦截器 什么是拦截器: 概念 :拦截器是Spring框架提供的核⼼功能之⼀, 主要⽤来拦截⽤⼾的请求, 在指定⽅法前后, 根据业务需要执⾏预先设定的代码。 也就是说, 允许开发⼈员提前预定义⼀些逻辑, 在⽤⼾的请求响应前后执⾏. 也…