Elasticsearch VS Typesense! Elasticsearch未来会被其它搜索引擎取代吗?

news2025/1/21 15:46:24

近期网上流行一批新的搜索引擎,动不动就大言不惭,要跟龙头老大Elasticsearch比,想把Elasticsearch击败。

1. Typesense 太猖狂了,对Elasticsearch极为不敬

如近期炒作很猖狂的Typesense开源搜索引擎,一出来就急着挑战Elasticsearch,我们来看看它的嚣张之处到底在哪?

Typesense 50毫秒完成3200万条数据搜索,这款搜索引擎让ElasticSearch慌了 
这算得上开源搜索界的一记重拳!

这回可把ElasticSearch打得措手不及了。

最近放出了一段视频,展示了一款名为Typesense的开源搜索引擎的恐怖威力:
    我可以在不到50毫秒的时间内搜索3200万条记录。

    这个速度简直疯了!
    。。。。。。。

在这里插入图片描述看到这里,不少开发者都惊呆了:

"这速度也太离谱了吧?我们的搜索怎么就这么慢呢?"

但是我想说的是:Typesense 就这?

2. Typesense 就这??

Typesense 就这点性能就敢拿出来大言不惭,敢于挑战ES?也太嚣张了吧!!

3. 来看看Elasticsearch吧

ES要用好,确实是一门难能的技术。学习ES,从初学到深入,再到产品级的亿级数据量搜索调优实战,学习曲线是比较陡!!

3.1 什么是Lucene

很多ES爱好者们可能不太清楚这个玩意,其实ES的前身就是Lucene,ES就是基于Lucene(单机版)做出来的集群搜索!

Lucene 其实学习起来不难,只需要理解每个字段有三个配置属性,即index(是否创建索引,选择是后,还需要选择索引类型),tokenizer(是否分词,选择是后还需要选择分词器类型),store(是否存储,若该值是否,index=true,表示不存在,但需要创建索引,用来搜索)即可。其它属性一般都是基于这三个的扩展,抓住主要的,再去做扩展学习就比较轻松!

其它不多说,本人也是ES的爱好者,从2012年接触lucene开始,通过一个具体项目实战,就对lucene有了比较深的了解,lucene当时用的4.0版本(经过了数年的进化,现在都已经9.0版本了),当时就有上亿的IO跟踪记录用的lucene存放,对某些字段创建了索引,硬盘都是普通的机械盘,内存只分配了2G,搜索速度那叫一个快,都是毫秒级返回!几毫秒到几十毫秒,很少超过100毫秒的!

3.2 来看看ES吧

ES的数据量如果不是很大,一般都没什么性能调整,几百万,千把万甚至几千万,就无需做什么调优,基本上保证内存适当大些,查询都是毫秒级,直接完败Typesense 。

只有上了亿级流量数据量了,才有必要考虑对ES做一些性能调优!

如下图,是ES集群搜索,单个节点的流程示意图,从此图得知,ES 的搜索引擎严重依赖于底层的 Filesystem Cache,如果给 Filesystem Cache 更多的内存,尽量让内存可以容纳所有的 IDX Segment File 索引数据文件,那么你在搜索的时候基本都会走内存且性能会非常高。
在这里插入图片描述**性能差距究竟可以有多大?**我们之前很多的测试和压测,如果走磁盘一般肯定上秒,搜索性能绝对是秒级别的,1 秒、5 秒、10 秒。但如果走 Filesystem Cache,则是走纯内存的,那么一般来说性能比走磁盘要高一个数量级,基本上就是毫秒级的,从几毫秒到几百毫秒不等。

3.3 ES亿级数据调优实战

真实场景

某个公司 ES 节点有 3 台机器,每台机器看起来内存很多(64G),总内存就是 64 * 3 = 192G。

每台机器给 ES JVM Heap 是 32G,那么剩下来留给 Filesystem Cache 的就是每台机器才 32G,总共集群里给 Filesystem Cache 的就是 32 * 3 = 96G 内存。

而此时,整个磁盘上索引数据文件,在 3 台机器上一共占用了 1T 的磁盘容量,ES 数据量是 1T,那么每台机器的数据量是 300G。这样性能好吗?

场景分析

Filesystem Cache 的内存才 100G,十分之一的数据可以放内存,其它的都在磁盘,然后你执行搜索操作,大部分操作都是走磁盘,性能肯定差。

优化方案

根据我们自己的生产环境实践经验,最佳的情况下,是仅仅在 ES 中就存少量的数据,就是你要用来搜索的那些索引,如果内存留给 Filesystem Cache 的是 100G,那么你就将索引数据控制在 100G 以内即可。这样,你的数据几乎全部走内存来搜索,性能非常之高,一般可以在1秒以内。

比如,你现在有一行数据:id,name,age … 30 个字段。但是你现在搜索,只需要根据 id,name,age 三个字段来搜索。如果你傻乎乎往 ES 里写入一行数据所有的字段,就会导致 90% 的数据无法用来搜索。

结果硬是占据了 ES 机器上的 Filesystem Cache 的空间,单条数据的数据量越大,就会导致 Filesystem Cahce 能缓存的数据就越少。

其实,仅仅写入 ES 中要用来检索的少数几个字段就可以了,比如写入 es id,name,age 三个字段。

然后你将其他的字段数据存在 MySQL/HBase 里,我们一般是建议用 ES + HBase 这个架构。

HBase 的特点是适用于海量数据的在线存储,就是对 HBase 可以写入海量数据,但是不要做复杂的搜索,做很简单的一些根据 id 或者范围进行查询的操作就可以了。

从 ES 中根据 name 和 age 去搜索,拿到的结果可能就 20 个 doc id,然后根据 doc id 到 HBase 里去查询每个 doc id 对应的完整的数据,查出来后再返回给前端。

**写入 ES 的数据最好小于等于,或者是略微大于 ES 的 Filesystem Cache 的内存容量。**你从 ES 检索可能只花费 20ms,然后再根据 ES 返回的 id 去 HBase 里查询,查 20 条数据,可能只耗费 30ms。

可能你原来那么玩儿,1T 数据都放 ES,会每次查询都是 5~10s,现在可能性能就会很高,每次查询就是 50ms

4. Elasticsearch 的未来及其对搜索引擎行业的影响

Elasticsearch 是一个开源搜索引擎和分析平台,近年来越来越受欢迎。凭借其近乎实时地索引和搜索大量数据的能力,Elasticsearch 已成为许多企业和组织的首选解决方案。随着技术的不断发展,Elasticsearch 的未来一片光明,它对搜索引擎行业的影响预计将是巨大的。

推动 Elasticsearch 未来发展的关键趋势之一是大数据的持续增长。随着越来越多的数据生成,组织正在寻找实时处理和分析数据的方法。Elasticsearch 提供了一种解决方案,使组织能够快速搜索、分析和可视化大量数据。这将继续推动 Elasticsearch 的采用,并可能导致开发新的用例。

塑造 Elasticsearch 未来的另一个趋势是云的增长。随着云计算的日益普及,组织正在寻找将其数据和应用程序迁移到云的方法。Elasticsearch 提供了一种可以轻松部署在云中的云原生解决方案,使其成为许多组织的有吸引力的选择。

人工智能 (AI) 和机器学习 (ML) 也有望在 Elasticsearch 的未来中发挥重要作用。凭借索引和搜索大量数据的能力,Elasticsearch 为构建 AI 和 ML 应用程序提供了一个宝贵的平台。例如,Elasticsearch 可用于构建推荐系统、预测模型等。

Elasticsearch 的未来也可能受到边缘计算增长的影响。随着设备和传感器数量的增加,组织正在寻找在靠近源头的边缘处理数据的方法。Elasticsearch 为此提供了解决方案,使组织能够在边缘索引和搜索数据,从而减少延迟并提高性能。

Elasticsearch 现在在做什么?

Elasticsearch 在数据库领域以多种有趣的方式颠覆了传统数据库。由于 Elasticsearch 并非旨在成为应用程序的主要数据库(如 MySQL 或 MongoDB),因此它具有更大的扩展灵活性,这是典型数据库产品无法做到的。Elastic 似乎正在采用“广泛”增长模式来扩大其用户群并创新 Elastic 堆栈。他们创建了Elasticsearch 有价值的其他用例,并开始蚕食其他数据库技术的市场份额。他们扫荡了 MongoDB、MySQL 和其他解决方案未能关注的所有边缘领域。

5. Elasticsearch 与 Typesense:有什么区别?

Elasticsearch 和 Typesense 都是非常流行的搜索和数据检索解决方案。让我们来探讨一下它们之间的主要区别。

5.1 可扩展性

Elasticsearch 的设计具有高度可扩展性,可通过向集群添加更多节点来实现水平扩展。它可以处理大量数据,并在需要时扩展到数千台服务器。另一方面,Typesense 构建为轻量级,并针对低资源消耗进行了优化。它是小型部署或资源效率优先考虑时的理想选择。

5.2 查询

Elasticsearch 提供强大而灵活的查询 DSL(领域特定语言),允许进行复杂的查询和聚合。它还高效地支持全文搜索、过滤和排序。另一方面,Typesense 提供了简化的查询语法,使其更易于使用和理解。它针对简单的搜索用例进行了优化,可能无法提供与 Elasticsearch 相同级别的灵活性。

5.3 无模式与基于模式

Elasticsearch 无模式,这意味着它可以处理同一索引内不同结构的文档。这种灵活性在处理非结构化数据时非常有用。相比之下,Typesense 采用基于模式的方法,其中文档必须遵循预定义的模式。这可确保数据一致性和更高效的索引,但在处理动态或不断发展的数据结构时可能会受到限制。

5.4 索引速度

Elasticsearch 针对快速索引数据进行了优化。它可以处理高写入负载,并且可以近乎实时地索引数据。这使得它适合需要频繁更新索引的用例。Typesense 虽然也具有良好的索引性能,但在高写入场景中可能不如 Elasticsearch 快。

5.5 内置功能

Elasticsearch 具有各种内置功能,如地理位置搜索、语言分析器和对父子关系的支持。它还拥有强大的插件和集成生态系统。另一方面,Typesense 专注于提供轻量级且易于使用的搜索引擎,内置功能较少。它可能需要额外的定制或与外部库集成才能实现某些功能。

5.6 社区和采用

Elasticsearch 存在时间较长,拥有较大的社区和用户群。它已被企业广泛采用,并且拥有更成熟的生态系统。Typesense 作为市场上的新玩家,社区可能较小,可用资源也较少。

5.7 学习曲线

ElasticSearch是比较著名的搜索引擎,您可能知道它是一种非常强大的工具,但它也很复杂,学习难度很高,曲线陡峭。例如,在内部部署 ElasticSearch 时,您将面临高昂的生产操作开销,需要处理超过 3000 个配置参数。

Typesense用 C++ 编写,是 ElasticSearch 的一个更易于使用的替代品。社区将其描述为一个开源、快速、容错且易于使用的搜索引擎

6. 总结

综上所述,Elasticsearch 的未来前景光明,预计其对搜索引擎行业的影响将是巨大的。凭借实时索引和搜索大量数据的能力,Elasticsearch 完全有能力在大数据、云计算、人工智能和边缘计算的持续增长中发挥关键作用。现在采用 Elasticsearch 的公司将能够充分利用这些趋势,并可能在未来几年获得巨大的收益。

总而言之,Elasticsearch 提供可扩展性、强大的查询功能、无模式结构、快速索引、更广泛的内置功能和更大的社区。

另一方面,Typesense 专注于轻量级、资源高效、易于使用、基于模式并针对简单搜索用例进行量身定制。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1976282.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Study--Oracle-07-ASM常用维护操作(五)

一、ASM创建新的磁盘组 1、查看系统中可用的磁盘 set lines 150; col name for a35; col path for a35; select group_number,path, state, name, total_mb, free_mb from v$asm_disk; 2、磁盘组操作 创建磁盘组 create DISKGROUP DATADGV2 EXTERNAL REDUNDANCY DISK /dev…

OpenGL笔记十八之透视投影矩阵实验-perspective函数

OpenGL笔记十八之透视投影矩阵实验-glm::perspective函数 —— 2024-08-03 下午 bilibili赵新政老师的教程看后笔记 code review! 文章目录 OpenGL笔记十八之透视投影矩阵实验-glm::perspective函数1.案例构造2.视张角60,相机位置(0.0f,0.0f,5.0f)3.视张角60&…

Yolov8添加ConvNetV1和V2模块

Yolov8添加ConvNet模块 1 ConvNet系列相关内容 (1)2022 论文地址:A ConvNet for the 2020s Code Link 如下图所示,精度、效率、尺寸都很不错。 论文的摘要如下: 视觉识别的“咆哮的 20 年代”始于视觉注意力 &…

V.PS澳大利亚VPS测评

V.PS的澳大利亚VPS位于澳大利亚悉尼市,回程三网强制是走的联通AS9929/CUII链路,是一种轻负载企业级回国路由...而且IP解锁能搞定奈飞、迪士尼、steam、chatgpt等,大洋洲流媒体解锁,尤其是澳大利亚的流媒体,比如澳大利亚…

Leetcode 3143. 正方形中的最多点数(二分、数组字符串、位运算集合)

方法一&#xff1a;二分答案&#xff08; 位运算集合&#xff09; class Solution { public:// 二分答案 顶多O(NlogN),logn去找最后的答案, n用来确定本次找的答案是否正确int maxPointsInsideSquare(vector<vector<int>>& points, string s) {int res 0;au…

opencv-图像基础变换

1&#xff0c;缩放 缩放是对图像的大小进行调整 缩放矩阵&#xff0c;相当于x和y乘一个常数 例如将图像放大两倍 import cv2 img cv2.imread(1.jpg) img cv2.resize(img, (400,400)) img cv2.resize(img, (0,0), fx3, fy1)#表示x方向扩大三倍&#xff0c;y方向不变 2&…

重学 KMP 小记

推荐在 cnblogs 上阅读。 重学 KMP 小记 前言 KMP 这个东西赛时用到的几率很小&#xff08;虽然圣人说概率不小、也不是很大&#xff09;&#xff0c;但是如果一旦考字符串类的题又极可能考匹配问题。当时掌握得也是一知半解&#xff0c;所以现在来重学来了。 情境引入 现…

【资料集】数据库设计说明书(Word原件提供)

2 数据库环境说明 3 数据库的命名规则 4 逻辑设计 5 物理设计 5.1 表汇总 5.2 表结构设计 6 数据规划 6.1 表空间设计 6.2 数据文件设计 6.3 表、索引分区设计 6.4 优化方法 7 安全性设计 7.1 防止用户直接操作数据库 7.2 用户帐号加密处理 7.3 角色与权限控制 8 数据库管理与维…

g++ 11 cuda11编译报错std::function “...“

换个gcc版本就行了 先安装gcc9 apt-get install gcc-9 g-9

蓝牙协议栈

BLE协议栈整体架构 首先了解一下&#xff0c;BLE协议栈(protocol stack)整体架构。 如上图所述&#xff0c;要实现一个BLE应用&#xff0c;首先需要一个支持BLE射频的芯片&#xff0c;然后还需要提供一个与此芯片配套的BLE协议栈&#xff0c;最后在协议栈上开发自己的应用。可…

新版 Navicat Premium 17 安装教程 (亲测可用)

前几天安装了新版本Navicat Premium 17、Navicat是用于MySQL的管理工具&#xff0c;使用非常方便&#xff0c;下面就记录一下安装过程&#xff0c;也方便其他正在使用Navicat Premium工具的同学参考&#xff0c;谢谢。 MySQL的安装配置 | MySQL的基础知识 | 基于Node.js应用的…

【课程总结】Day17(上):NLP自然语言处理及RNN网络

前言 在机器学习章节【课程总结】Day6&#xff08;上&#xff09;&#xff1a;机器学习项目实战–外卖点评情感分析预测中&#xff0c;我们曾借助sklearn进行了外卖点评的情感分析预测&#xff1b;接下来&#xff0c;我们将深入了解自然语言处理的基本概念、RNN模型以及借助RN…

深度学习环境完整安装(Python+Pycharm+Pytorch cpu版)

在这里&#xff0c;我们将引导您逐步完成深度学习环境的完整安装&#xff0c;助您踏上从Python到PyTorch的探索之旅。通过本博客&#xff0c;您将轻松掌握如何设置Python环境、使用Pycharm进行开发以及安装Pytorch&#xff0c;成为一名具备完整深度学习环境的实践者。让我们一起…

RGB图像的读取与保存

目录 1、安装imageio 2、读取照片 3、保存照片 4、resize 5、示例代码 1、安装imageio pip install imageio -i https://pypi.tuna.tsinghua.edu.cn/simple 2、读取照片 import imageio img imageio.imread(image_path) 3、保存照片 import imageio import numpy as…

【STC32G12K128开发板】第3-10讲:SG90舵机驱动

第3-10讲&#xff1a;SG90舵机驱动 学习目的了解SG90舵机的相关参数、控制方式。编程用PWM驱动SG90舵机&#xff0c;通过按键改变舵机旋转角度。 舵机简介 规格参数 “舵机”这个名号其实是一个俗称&#xff0c;是那些玩航模、船模的人起的名字&#xff0c;因为这种电机常被用…

yolov8pose 部署rknn(rk3588)、部署地平线Horizon、部署TensorRT,部署工程难度小、模型推理速度快,DFL放后处理中

特别说明&#xff1a;参考官方开源的yolov8代码、瑞芯微官方文档、地平线的官方文档&#xff0c;如有侵权告知删&#xff0c;谢谢。 模型和完整仿真测试代码&#xff0c;放在github上参考链接 模型和代码。 之前写了yolov8、yolov8seg、yolov8obb 的 DFL 放在模型中和放在后处理…

界面控件DevExpress WinForms,支持HTML CSS提升用户体验(一)

DevExpress WinForms现在可以利用HTML/CSS强大的功能&#xff0c;帮助受DevExpress驱动的WinForms应用程序引入现代的UI元素和用户体验&#xff01; P.S&#xff1a;DevExpress WinForms拥有180组件和UI库&#xff0c;能为Windows Forms平台创建具有影响力的业务解决方案。Dev…

E25.【C语言】练习:修改二进制序列的指定位

十进制13-->二进制01101 现要求二进制序列的第5位修改为1&#xff0c;再改成0 复习&#xff1a;逻辑运算 非&#xff08;NOT&#xff09;&#xff08;C语言&#xff1a;~&#xff09; x0&#xff0c;NOT x-->1&#xff1b;x1&#xff0c;NOT x-->0 与&#xff08;…

Animate软件基础:将对象分层以应用补间动画

在Animate进行内容制作时&#xff0c;有时会需要把元件或对象分散到多个图层中&#xff0c;可以使用软件的分散图层功能。 将补间动画应用于对象时&#xff0c;Animate 会自动将该对象移动到其补间图层。 但是&#xff0c;也可以自己将对象分散到其各自的图层。例如&#xff0c…

【最长重复子数组】python刷题记录

R3-滑动窗口专题 . - 力扣&#xff08;LeetCode&#xff09;