0. 写在最前面
- 从高能到统计物理模型RG的技术
- 主要参考 大黄猫的量子多体讲义,杨展如
- NRG / DMRG 暂时没有想法,编排不出内容
- 有趣的零碎内容,如 CFT,Z2 Lattice gauge, Fermi field 重整化
- 零碎内容,下篇文章将逐一讲述
1. 重整化 - 标度截断
- 将 相互作用的效果吸收进物理参数当中,重新定义其数值且不改变系统结构
- 在 不同尺度下观测物理系统会得到不一样的物理内容
- 初始动机 是处理量子场论当中圈图发散问题
- d = 4,\phi-4,u的一阶修正项消除 \phi-2 的发散:
I 1 = 1 ( 2 π ) 4 ∫ 0 Λ d 4 k k 2 + r = π 2 ( 2 π ) 4 ( Λ 2 − r l n ( Λ 2 + r r ) ) r → r ˉ = r + 3 u I 1 f G L ( ϕ ) = 1 2 ( ∇ ϕ ) 2 + r − 3 u I 1 2 ϕ 2 + u 4 ϕ 4 \begin{aligned} & I_1 = \frac{1}{(2\pi)^4} \int_0 ^\Lambda \frac{d^4k}{k^2 +r} = \frac{\pi^2}{(2\pi)^4} (\Lambda^2 - rln(\frac{\Lambda^2 +r}{r})) \\ & r \rightarrow \bar r = r + 3u I_1 \\ & f_{GL}(\phi) = \frac{1}{2} (\nabla \phi)^2 + \frac{r - 3uI_1}{2} \phi^2 + \frac{u}{4}\phi^4 \\ \end{aligned} I1=(2π)41∫0Λk2+rd4k=(2π)4π2(Λ2−rln(rΛ2+r))r→rˉ=r+3uI1fGL(ϕ)=21(∇ϕ)2+2r−3uI1ϕ2+4uϕ4 - d = 4,\phi-4,u的二阶修正:
I 2 = 1 ( 2 π ) 4 ∫ 0 Λ d 4 k ( k 2 + r ) 2 = π 2 ( 2 π ) 4 ( l n ( Λ 2 + r r ) − Λ 2 Λ 2 + r ) u → u ˉ = u − 9 u 2 I 2 \begin{aligned} & I_2 = \frac{1}{(2\pi)^4} \int_0 ^\Lambda \frac{d^4k}{(k^2 +r)^2} = \frac{\pi^2}{(2\pi)^4} ( ln(\frac{\Lambda^2 +r}{r}) - \frac{\Lambda^2}{\Lambda^2+r} ) \\ & u \rightarrow \bar u = u - 9u^2 I_2 \end{aligned} I2=(2π)41∫0Λ(k2+r)2d4k=(2π)4π2(ln(rΛ2+r)−Λ2+rΛ2)u→uˉ=u−9u2I2
再引入发散项,作为 u 的再次修正
f G L ( ϕ ) = 1 2 ( ∇ ϕ ) 2 + r − 3 u I 1 2 ϕ 2 + u 4 ϕ 4 + 1 4 9 u 2 16 π 2 l n ( Λ 2 r ) ϕ 4 lim Λ → ∞ u ˉ = lim Λ → ∞ ( u 2 − 9 u 2 I 2 + 9 u 2 16 π 2 l n ( Λ 2 r ) ) \begin{aligned} & f_{GL}(\phi) = \frac{1}{2} (\nabla \phi)^2 + \frac{r - 3uI_1}{2} \phi^2 + \frac{u}{4}\phi^4 + \frac{1}{4} \frac{9u^2}{16\pi^2} ln(\frac{\Lambda^2}{r}) \phi^4 \\ &\lim_{\Lambda \rightarrow \infty } \bar u = \lim_{\Lambda \rightarrow \infty}(u^2 - 9u^2I_2 + \frac{9u^2}{16\pi^2}ln(\frac{\Lambda^2}{r})) \end{aligned} fGL(ϕ)=21(∇ϕ)2+2r−3uI1ϕ2+4uϕ4+4116π29u2ln(rΛ2)ϕ4Λ→∞limuˉ=Λ→∞lim(u2−9u2I2+16π29u2ln(rΛ2)) - Gell-Mann-Low RG Equation:
- \Lambda1,\Lambda2不同,理论形式也不同
- 为了联系不同能标下的场论表示,将能标连续化,并提出微分方程组
β ( r ) = d r ( Λ ) d l n ( Λ ) β ( u ) = d u ( Λ ) d l n ( Λ ) \begin{aligned} & \beta(r) = \frac{d r(\Lambda)}{d~ln(\Lambda)} \\ & \beta(u)=\frac{d u(\Lambda)}{d~ln(\Lambda)} \\ \end{aligned} β(r)=d ln(Λ)dr(Λ)β(u)=d ln(Λ)du(Λ) - 这便是 重整化群(RG-Equation)
2. Widom-Kadanoff 粗粒化
3. Wilson 动量空间重整化群
- 专门用于分析临界系统
- 临界行为应该在 高能同低能的视角下表现出相同
- 因此,将场区分开高能-低能自由度并积去高能自由度
- 再将低能有效场论重新标度成高能形式
- 最后将各个物理参数在不同能标下的变换归纳成重整化群方程
- 考虑单分量 Landau 理论
Z = ∫ D [ ϕ ] e ∫ d d x f G L f G L = 1 2 ( ∇ ϕ ) 2 + r 2 ϕ 2 + u 4 ϕ 4 \begin{aligned} & Z = \int D[\phi] e^{\int d^d x f_{GL}} \\ & f_{GL} = \frac{1}{2} (\nabla\phi)^2 + \frac{r}{2}\phi^2 + \frac{u}{4}\phi^4 \\ \end{aligned} Z=∫D[ϕ]e∫ddxfGLfGL=21(∇ϕ)2+2rϕ2+4uϕ4 - =>(1)\phi-2 理论 (u = 0)
- 1. 区分高低能
ϕ = ∫ 0 Λ / b e i k x ϕ k + ∫ Λ / b Λ e i k x ϕ k = ϕ < + ϕ > f G L = s 2 ( ( ∇ ϕ < ) 2 + ( ∇ ϕ > ) 2 ) + r 2 ( ( ϕ < ) 2 + ( ϕ > ) 2 ) \begin{aligned} & \phi = \int_0^{\Lambda/b} e^{ikx} \phi_k + \int_{\Lambda/b}^{\Lambda} e^{ikx} \phi_k = \phi_< + \phi_> \\ & f_{GL} = \frac{s}{2} ( (\nabla \phi_<)^2 + (\nabla \phi_>)^2 )+ \frac{r}{2}((\phi_<)^2 + ( \phi_>)^2) \\ \end{aligned} ϕ=∫0Λ/beikxϕk+∫Λ/bΛeikxϕk=ϕ<+ϕ>fGL=2s((∇ϕ<)2+(∇ϕ>)2)+2r((ϕ<)2+(ϕ>)2)
注意,这里的交错项后续的积分结果为 0 ,因此可以删掉
∫ d d x ϕ < ϕ > = 2 π δ ( k > + k < ) = 0 \int d^dx \phi_< \phi_> = 2\pi \delta(k_> +k_<) = 0 ∫ddxϕ<ϕ>=2πδ(k>+k<)=0 - 2. 积掉高能部分
F G L = F G L > + F G L < Z = ∫ D [ ϕ < ] e F G L < ∫ D [ ϕ > ] e F G L > = ∫ D [ ϕ < ] e F G L < ∏ k = Λ / b Λ 2 π ( s k 2 + r ) \begin{aligned} & F_{GL} =F_{GL>} + F_{GL<} \\ & Z = \int D[\phi_<] e^{F_{GL}<} \int D[\phi_>] e^{F_{GL}>} = \int D[\phi_<] e^{F_{GL}<} \prod^\Lambda _{k=\Lambda/b} \frac{2\pi}{(sk^2 + r)} \end{aligned} FGL=FGL>+FGL<Z=∫D[ϕ<]eFGL<∫D[ϕ>]eFGL>=∫D[ϕ<]eFGL<k=Λ/b∏Λ(sk2+r)2π
可见,高能部分仅仅贡献出常数 - 3. 重标度
F G L < = ∫ 0 Λ / b d d k ( 2 π ) d ( s k 2 + r ) ∣ ϕ < k ∣ 2 , k → k ′ = b k , r ′ = b 2 r F G L < = ∫ 0 Λ d d k ′ ( 2 π ) d b d ( s k ′ 2 b 2 + r ′ 2 b 2 ) ∣ ϕ < k ′ ′ ∣ 2 , ϕ < k ′ ′ = b − d + 2 2 ϕ < k \begin{aligned} & F_{GL<} = \int^ {\Lambda/b} _0 \frac{d^dk}{(2\pi)^d} (sk^2 + r) |\phi_{<k}|^2 , k\rightarrow k'=bk,r' = b^2r \\ & F_{GL<} = \int^{\Lambda}_0 \frac{d^dk'}{(2\pi)^d b^d}(s\frac{k'^2}{b^2}+\frac{r'^2}{b^2})|\phi'_{<k'}|^2, \phi'_{<k'} = b ^ {-\frac{d+2}{2}}\phi_{<k} \\ & \\ \end{aligned} FGL<=∫0Λ/b(2π)dddk(sk2+r)∣ϕ<k∣2,k→k′=bk,r′=b2rFGL<=∫0Λ(2π)dbdddk′(sb2k′2+b2r′2)∣ϕ<k′′∣2,ϕ<k′′=b−2d+2ϕ<k - 4. RG-Equation 与标度行为
r ′ = b 2 r = e 2 l n b r ≈ ( 1 + 2 l n b ) r β ( r ) = d r ′ d l n ( b ) = 2 r \begin{aligned} & r' = b^2 r = e^{2lnb}r \approx (1+2lnb)r\\ & \beta(r) = \frac{d r'}{d ln(b)} = 2r \end{aligned} r′=b2r=e2lnbr≈(1+2lnb)rβ(r)=dln(b)dr′=2r
获得不动点 r* = 0,在附近展开 \beta_r
β ( r ) = β ( r ∗ ) + ∂ β ∂ r ∣ r = r ∗ ( r − r ∗ ) = 2 r \beta(r) = \beta(r^*) + \frac{\partial \beta}{\partial r}|_{r = r^*} (r-r^*) = 2r β(r)=β(r∗)+∂r∂β∣r=r∗(r−r∗)=2r
进而进行积分,获得标度行为
→ ∫ r ( b = 1 ) = r 0 r ( b ) = r ˉ d r r = 2 ∫ b = 0 b d l n b → r ˉ = r 0 b 2 → ξ ∝ ( r ˉ r 0 ) 1 2 ∝ r 0 − 1 2 → r 0 = ( T − T c ) → ξ ∝ ( T − T c ) − ν \begin{aligned} \rightarrow & \int^{r(b) = \bar r} _{r(b=1) = r_0} \frac{dr}{r} = 2 \int^b_{b=0} dlnb \\ \rightarrow & \bar r = r_0 b^2 \rightarrow \xi \propto (\frac{\bar r}{r_0})^{\frac{1}{2}} \propto r_0^{-\frac{1}{2}} \\ \rightarrow & r_0 = (T-T_c) \rightarrow \xi \propto (T-T_c)^{-\nu} \end{aligned} →→→∫r(b=1)=r0r(b)=rˉrdr=2∫b=0bdlnbrˉ=r0b2→ξ∝(r0rˉ)21∝r0−21r0=(T−Tc)→ξ∝(T−Tc)−ν
这里可以获得确切数值,ν = 1/2
· - =>(2)\phi-4 理论 - (4-d) 展开
- 1. 高低能混杂
F G L ( ϕ < ) = 1 2 ( ∇ ϕ < ) 2 + r 2 ( ϕ < 2 ) + u 4 ( ϕ < 4 ) F G L ( ϕ > ) = 1 2 ( ∇ ϕ > ) 2 + r 2 ( ϕ > 2 ) + u 4 ( ϕ > 4 ) + 6 u 4 ϕ < 2 ϕ > 2 Z = ∫ D [ ϕ < ] e − F G L ( ϕ < ) ∫ D [ ϕ > ] e − F G L ( ϕ > ) \begin{aligned} & F_{GL}(\phi_<) = \frac{1}{2}(\nabla\phi_<)^2 + \frac{r}{2} (\phi^2_<) + \frac{u}{4}(\phi^4_<) \\ & F_{GL}(\phi_>) = \frac{1}{2}(\nabla\phi_>)^2 + \frac{r}{2} (\phi^2_>) + \frac{u}{4}(\phi^4_>) + \frac{6u}{4}\phi^2_<\phi^2_>\\ & Z = \int D[\phi_<] e^{-F_{GL}(\phi_<)} \int D[\phi_>] e^{-F_{GL}(\phi_>)} \\ \end{aligned} FGL(ϕ<)=21(∇ϕ<)2+2r(ϕ<2)+4u(ϕ<4)FGL(ϕ>)=21(∇ϕ>)2+2r(ϕ>2)+4u(ϕ>4)+46uϕ<2ϕ>2Z=∫D[ϕ<]e−FGL(ϕ<)∫D[ϕ>]e−FGL(ϕ>)
因此,重标的思路是:高能部分不再仅是作为一个常数,而是关于低能项的代数式。因此,不能仅针对低能部分的积分,直接确定重标操作。掺杂部分将吸收进低能部分进行额外地重标修正。因此,首要的一步是将含低能项的高能部分给理清。 - 2. ε = (4-d) 展开
e − F G L ( ϕ > ) = e − ∫ d d x 1 2 ( ∇ ϕ > ) 2 + r 2 ( ϕ > 2 ) e − ∫ d d x u 4 ( ϕ > 4 ) + 6 u 4 ϕ < 2 ϕ > 2 = e − ∫ d d x 1 2 ( ∇ ϕ > ) 2 + r 2 ( ϕ > 2 ) × ( 1 − ∫ d d x ( u 4 ( ϕ > 4 ) + 6 u 4 ϕ < 2 ϕ > 2 ) + 1 2 ! ( − ∫ d d x ( u 4 ( ϕ > 4 ) + 6 u 4 ϕ < 2 ϕ > 2 ) ) ( − ∫ d d y ( u 4 ( ϕ > 4 ) + 6 u 4 ϕ < 2 ϕ > 2 ) ) + . . . . ) = e − ∫ d d x 1 2 ( ∇ ϕ > ) 2 + r 2 ( ϕ > 2 ) × ( 1 + O ( u ) + O ( u 2 ) + O ( u 3 ) + . . . ) \begin{aligned} & e^{-F_{GL}(\phi_>)} = e^{-\int d^dx \frac{1}{2}(\nabla\phi_>)^2 + \frac{r}{2} (\phi^2_>)} e^{-\int d^dx \frac{u}{4}(\phi^4_>) + \frac{6u}{4}\phi^2_<\phi^2_>} \\ = & e^{-\int d^dx \frac{1}{2}(\nabla\phi_>)^2 + \frac{r}{2} (\phi^2_>)} \times (1- \int d^dx (\frac{u}{4}(\phi^4_>) + \frac{6u}{4}\phi^2_<\phi^2_>) \\ &+ \frac{1}{2!}( -\int d^dx (\frac{u}{4}(\phi^4_>) + \frac{6u}{4}\phi^2_<\phi^2_>))(-\int d^dy (\frac{u}{4}(\phi^4_>) + \frac{6u}{4}\phi^2_<\phi^2_>)) + ....) \\ \\ = & e^{-\int d^dx \frac{1}{2}(\nabla\phi_>)^2 + \frac{r}{2} (\phi^2_>)} \times (1+O(u) + O(u^2) + O(u^3) + ... ) \\ \end{aligned} ==e−FGL(ϕ>)=e−∫ddx21(∇ϕ>)2+2r(ϕ>2)e−∫ddx4u(ϕ>4)+46uϕ<2ϕ>2e−∫ddx21(∇ϕ>)2+2r(ϕ>2)×(1−∫ddx(4u(ϕ>4)+46uϕ<2ϕ>2)+2!1(−∫ddx(4u(ϕ>4)+46uϕ<2ϕ>2))(−∫ddy(4u(ϕ>4)+46uϕ<2ϕ>2))+....)e−∫ddx21(∇ϕ>)2+2r(ϕ>2)×(1+O(u)+O(u2)+O(u3)+...)
需要被单独指出的一个结构,【 Intergrate out 】~ 用期望表示将积分的积分式里的某一自由度单独积出
Z O ( u ) = ∫ D [ ϕ > ] e − ∫ d d x 1 2 ( ∇ ϕ > ) 2 + r 2 ( ϕ > 2 ) ( − ∫ d d x u 4 ϕ > 4 − ∫ d d x 6 u 4 ϕ < 2 ϕ > 2 ) Z_{O(u)} = \int D[\phi_>] e^{-\int d^dx \frac{1}{2}(\nabla\phi_>)^2 + \frac{r}{2} (\phi^2_>)} (-\int d^dx \frac{u}{4} \phi^4_> - \int d^dx \frac{6u}{4}\phi^2_<\phi^2_>) ZO(u)=∫D[ϕ>]e−∫ddx21(∇ϕ>)2+2r(ϕ>2)(−∫ddx4uϕ>4−∫ddx46uϕ<2ϕ>2)
- 保留至 O(u):
事实上,O(u)中,第一项不含低能部分,出于对参数的修正效果考虑将其忽略,对 第二项高能部分的积分,由 Z0 <\phi^2_>0 表示,并转换成动量空间的积分 【k1,k2 for \phi<】,【k3,k4 for \phi_>】。重新指数化是什么意思?
O ( u 1 ) 1 : − ∫ d d x u 4 6 ϕ < 2 ( Z 0 ⟨ ϕ > 2 ⟩ 0 ) = Z 0 ∫ d d k 1 ( 2 π ) d d d k 2 ( 2 π ) d d d k 3 ( 2 π ) d d d k 4 ( 2 π ) d − u 4 6 ∫ d d x e i ( k 1 + k 2 ) x e i ( k 3 + k 4 ) x ϕ < ( k 1 ) ϕ < ( k 2 ) ⟨ ϕ > ( k 3 ) ϕ > ( k 4 ) ⟩ 0 = Z 0 ∫ d d k 1 ( 2 π ) d ( − u 4 6 ∫ Λ / b Λ d d k 3 ( 2 π ) d 1 k 3 2 + r ) ϕ < ( k 1 ) ϕ < ( − k 1 ) → O ( u 1 ) 1 + . . . 1 N ! O ( u 1 ) N : = Z 0 e x p ( ∫ d d k 1 ( 2 π ) d ( − u 4 6 ∫ Λ / b Λ d d k 3 ( 2 π ) d 1 k 3 2 + r ) ∣ ϕ < ( k 1 ) ∣ 2 ) \begin{aligned} &O(u^1)^1 : - \int d^dx \frac{u}{4}6\phi^2_< (Z_0 \left \langle \phi^2_> \right \rangle _0 ) \\ &= Z_0 \int \frac{d^d k_1}{(2\pi)^d} \frac{d^d k_2}{(2\pi)^d} \frac{d^d k_3}{(2\pi)^d} \frac{d^d k_4}{(2\pi)^d} \frac{-u}{4} 6 \int d^dx ~e^{i(k_1 + k_2)x}e^{i(k_3+k_4)x} \phi_<(k_1)\phi_<(k_2) \left \langle \phi_>(k_3)\phi_>(k_4) \right \rangle _ 0 \\ &= Z_0 \int \frac{d^dk_1}{(2\pi)^d}(\frac{-u}{4}6 \int^{\Lambda}_{\Lambda/b} \frac{d^dk_3}{(2\pi)^d} \frac{1}{k^2_3 +r})\phi_<(k_1)\phi_<(-k_1) \\ & \rightarrow\\ &O(u^1)^1 + ...\frac{1}{N!}O(u^1)^N : \\ &=Z_0 ~exp (\int \frac{d^dk_1}{(2\pi)^d}(\frac{-u}{4} 6\int^{\Lambda}_{\Lambda/b} \frac{d^dk_3}{(2\pi)^d} \frac{1}{k^2_3 +r}) |\phi_<(k_1)|^2)\\ \end{aligned} O(u1)1:−∫ddx4u6ϕ<2(Z0⟨ϕ>2⟩0)=Z0∫(2π)dddk1(2π)dddk2(2π)dddk3(2π)dddk44−u6∫ddx ei(k1+k2)xei(k3+k4)xϕ<(k1)ϕ<(k2)⟨ϕ>(k3)ϕ>(k4)⟩0=Z0∫(2π)dddk1(4−u6∫Λ/bΛ(2π)dddk3k32+r1)ϕ<(k1)ϕ<(−k1)→O(u1)1+...N!1O(u1)N:=Z0 exp(∫(2π)dddk1(4−u6∫Λ/bΛ(2π)dddk3k32+r1)∣ϕ<(k1)∣2)
-
因此,重新带入 \phi_2 项,整理成对 r/2 的修正
r ˉ = r + u 4 12 ∫ Λ / b Λ d d k ′ ( 2 π ) d 1 k ′ 2 + r \bar r = r+\frac{u}{4}12\int^{\Lambda}_{\Lambda/b}\frac{d^dk'}{(2\pi)^d} \frac{1}{k'^2 +r} rˉ=r+4u12∫Λ/bΛ(2π)dddk′k′2+r1同理,对二阶项的【 Intergrate out 】 ~ 仍仅需考虑两个第二项的重积分
Z 0 2 ∫ d d x ⟨ 6 u 4 ϕ < 2 ( x ) ϕ > 2 ( x ) ∫ d d y 6 u 4 ϕ < 2 ( y ) ϕ > 2 ( y ) ⟩ 0 \frac{Z_0}{2} \int d^dx \left \langle \frac{6u}{4} \phi^2_<(x)\phi^2_>(x)\int d^dy \frac{6u}{4}\phi^2_<(y)\phi^2_>(y) \right \rangle _0 2Z0∫ddx⟨46uϕ<2(x)ϕ>2(x)∫ddy46uϕ<2(y)ϕ>2(y)⟩0
- 保留至 O(u^2):
O ( u 2 ) : Z 0 2 ∫ d d x ⟨ 6 u 4 ϕ < 2 ( x ) ϕ > 2 ( x ) ∫ d d y 6 u 4 ϕ < 2 ( y ) ϕ > 2 ( y ) ⟩ 0 = Z 0 2 ∫ d d x d d y ⟨ ϕ 2 ( x ) > ϕ 2 ( y ) > ⟩ 0 ϕ 2 ( x ) < ϕ 2 ( y ) < = Z 0 ∫ d d x 36 u 2 4 2 ∫ d d k 1 ( 2 π ) d d d k 2 ( 2 π ) d d d k 1 ′ ( 2 π ) d d d k 2 ′ ( 2 π ) d e i ( k 1 + k 2 + k 1 ′ + k 2 ′ ) x ϕ ( k 1 ) ϕ ( k 2 ) ϕ ( k 1 ′ ) ϕ ( k 2 ′ ) ∫ d d k ′ ( 2 π ) d 1 ( k ′ 2 + r ) 2 = Z 0 ∫ d d k 1 ( 2 π ) d ∫ d d k 2 ( 2 π ) d ( 36 u 2 4 2 ∫ Λ / b Λ d d k ′ ( 2 π ) d 1 ( k ′ 2 + r ) 2 ) ∣ ϕ < ( k 1 ) ϕ < ( k 2 ) ∣ 2 \begin{aligned} & O(u^2) : \frac{Z_0}{2} \int d^dx \left \langle \frac{6u}{4} \phi^2_<(x)\phi^2_>(x)\int d^dy \frac{6u}{4}\phi^2_<(y)\phi^2_>(y) \right \rangle _0 \\ ~~ & = \frac{Z_0}{2} \int d^dx~d^dy \left \langle \phi^2(x)_> \phi^2(y)_> \right \rangle_0 \phi^2(x)_< \phi^2(y)_< \\ ~~ & = Z_0 \int d^dx \frac{36 u^2}{4^2} \int \frac{d^d k_1}{(2\pi)^d}\frac{d^d k_2}{(2\pi)^d}\frac{d^d k_1'}{(2\pi)^d} \frac{d^d k_2'}{(2\pi)^d } e^{i(k_1 + k_2 + k'_1 +k'_2)x} \phi(k_1)\phi(k_2)\phi(k'_1)\phi(k'_2) \int \frac{d^d k'}{(2\pi)^d} \frac{1}{(k'^2+r)^2} \\ ~~ & =Z_0 \int \frac{d^dk_1} {(2\pi)^d} \int \frac{d^dk_2} {(2\pi)^d} ( \frac{36 u^2}{4^2} \int^{\Lambda}_{\Lambda/b} \frac{d^d k'}{(2\pi)^d} \frac{1}{(k'^2+r)^2}) ~|~\phi_<(k_1)\phi_<(k_2)~|^2 \end{aligned} O(u2):2Z0∫ddx⟨46uϕ<2(x)ϕ>2(x)∫ddy46uϕ<2(y)ϕ>2(y)⟩0=2Z0∫ddx ddy⟨ϕ2(x)>ϕ2(y)>⟩0ϕ2(x)<ϕ2(y)<=Z0∫ddx4236u2∫(2π)dddk1(2π)dddk2(2π)dddk1′(2π)dddk2′ei(k1+k2+k1′+k2′)xϕ(k1)ϕ(k2)ϕ(k1′)ϕ(k2′)∫(2π)dddk′(k′2+r)21=Z0∫(2π)dddk1∫(2π)dddk2(4236u2∫Λ/bΛ(2π)dddk′(k′2+r)21) ∣ ϕ<(k1)ϕ<(k2) ∣2
-
因此,重新代入 \phi_4 项,整理成对 u/4 的修正
u ˉ = u − u 2 4 36 ∫ Λ / b Λ d d k ′ ( 2 π ) d 1 ( k ′ 2 + r ) 2 \bar u = u - \frac{u^2}{4} 36 \int^{\Lambda}_{\Lambda/b}\frac{d^dk'}{(2\pi)^d} \frac{1}{(k'^2 +r)^2} uˉ=u−4u236∫Λ/bΛ(2π)dddk′(k′2+r)21 -
3. 重定义,重标度
我们先关注低能部分的重标度&
F G L ( ϕ < ) = ∫ d d k ( 2 π ) d ( k 2 2 + r 2 ) ∣ ϕ < k ∣ 2 + u 4 ∫ d d k 1 ( 2 π ) d ∫ d d k 2 ( 2 π ) d ∫ d d k 3 ( 2 π ) d ∫ d d k 4 ( 2 π ) d ‘ ∫ d d x e i ( k 1 + k 2 + k 3 + k 4 ) x ϕ < ( k 1 ) ϕ < ( k 2 ) ϕ < ( k 3 ) ϕ < ( k 4 ) \begin{aligned} & F_{GL}(\phi_<) = \int \frac{d^d k}{(2\pi)^d} (\frac{k^2}{2} +\frac{r}{2})|\phi_{<k}|^2 \\ & + \frac{u}{4} \int \frac{d^dk_1}{(2\pi)^d} \int \frac{d^dk_2}{(2\pi)^d} \int \frac{d^dk_3}{(2\pi)^d} \int \frac{d^dk_4}{(2\pi)^d} \\ & ` \int d^d x e^{i(k_1+ k_2+k_3+k_4)x} \phi_<(k_1)\phi_<(k_2)\phi_<(k_3)\phi_<(k_4) \end{aligned} FGL(ϕ<)=∫(2π)dddk(2k2+2r)∣ϕ<k∣2+4u∫(2π)dddk1∫(2π)dddk2∫(2π)dddk3∫(2π)dddk4‘∫ddxei(k1+k2+k3+k4)xϕ<(k1)ϕ<(k2)ϕ<(k3)ϕ<(k4)
不难发现u=0时,k, x, r, ϕ 等量的重标关系,并且将其推至 u
k ′ = b k , x ′ = x / b , r ′ = b 2 r , ϕ ′ = b − b + 2 2 ϕ → u ′ = b 4 − d u \begin{aligned} & ~~~k' = bk,~ x'=x/b,~r'=b^2r, \\ & ~~~\phi '= b^{ -\frac{b+2}{2}}\phi \\ & \rightarrow u' = b^{4-d}u \end{aligned} k′=bk, x′=x/b, r′=b2r, ϕ′=b−2b+2ϕ→u′=b4−du
同时,计入上面高能自由度对低能参数的修正,我们获得 r, u 的重定义;并给出其在低能框架下的重标
r ˉ = r + u 4 12 ∫ Λ / b Λ d d k ′ ( 2 π ) d 1 k ′ 2 + r r ′ = b 2 r ˉ u ˉ = u − u 2 4 36 ∫ Λ / b Λ d d k ′ ( 2 π ) d 1 ( k ′ 2 + r ) 2 u ′ = b 4 − d u ˉ \begin{aligned} & \bar r = r+\frac{u}{4}12\int^{\Lambda}_{\Lambda/b}\frac{d^dk'}{(2\pi)^d} \frac{1}{k'^2 +r} \\ & r' = b^2 \bar r \\ & \bar u =u - \frac{u^2}{4}36\int^{\Lambda}_{\Lambda/b}\frac{d^dk'}{(2\pi)^d} \frac{1}{(k'^2 +r)^2}\\ & u' = b^{4-d} \bar u \end{aligned} rˉ=r+4u12∫Λ/bΛ(2π)dddk′k′2+r1r′=b2rˉuˉ=u−4u236∫Λ/bΛ(2π)dddk′(k′2+r)21u′=b4−duˉ
对于大动量截断,r~0 (查书)
··········观察 r 的结构,这会导致 r 因为粗略近似,太大效果的零点漂移,并不能出现合理的不动点形式
对该复杂积分,我们需要在 r 处进行更加细致的逼近。在不动点附近展开,因而要扔掉 r,u 的独立零点项(查书)
~~ ~~ ~~ -
4. RG - Equation 与标度行为
对于 \phi-4 model 的 不动点,两组解,分别是 Gauss 不动点,Wilson - Fisher不动点
r ′ = b 2 r ( 1 − 3 u ˉ l n ( b ) ) u ^ = b 4 − d u ^ ( 1 − 9 u ^ l n ( b ) ) → β ( r ) = ( 2 − 3 u ^ ) r β ( u ^ ) = ( ϵ − 9 u ^ ) u ^ ; ϵ = 4 − d \begin{aligned} & r' = b^2r(1-3 \bar u ln(b)) \\ & \hat u = b^{4-d} \hat u(1-9\hat u ln(b)) \\ & \rightarrow \\ & \beta(r) = (2-3\hat u)r \\ & \beta(\hat u) = (\epsilon - 9 \hat u) \hat u ; \epsilon = 4-d \\ \end{aligned} r′=b2r(1−3uˉln(b))u^=b4−du^(1−9u^ln(b))→β(r)=(2−3u^)rβ(u^)=(ϵ−9u^)u^;ϵ=4−d -
Gauss’s
r ∗ = 0 ; u ^ ∗ = 0 → β ( r ) ≈ ( 2 − 3 u ^ ∗ ) ( r − r ∗ ) + ( − 3 r ∗ ) ( u ^ − u ^ ∗ ) = 2 r > 0 β ( u ^ ) ≈ ( ϵ − 9 u ^ ) u ^ = ϵ u ^ \begin{aligned} & r^* = 0 ;\hat u^* = 0 \\ & \rightarrow \\ & \beta(r) \approx (2-3\hat u^*)(r-r^*) + (-3r^*)(\hat u-\hat u^*) = 2r > 0\\ & \beta(\hat u) \approx (\epsilon - 9 \hat u) \hat u = \epsilon \hat u \end{aligned} r∗=0;u^∗=0→β(r)≈(2−3u^∗)(r−r∗)+(−3r∗)(u^−u^∗)=2r>0β(u^)≈(ϵ−9u^)u^=ϵu^ -
d > 4: 物理上的相变点
-
d < 4: 非物理点(两端远离)
-
Fisher’s
r ∗ = 0 ; u ^ ∗ = ϵ / 9 → β ( r ) = ( 2 − ϵ / 3 ) r β ( u ^ ) = ( u ^ − ϵ / 9 ) ( − ϵ ) \begin{aligned} & r^* = 0;\hat u^* = \epsilon / 9 \\ & \rightarrow \\ & \beta(r) = (2-\epsilon/3) r \\ & \beta(\hat u) = (\hat u - \epsilon/9 ) (-\epsilon) \\ \end{aligned} r∗=0;u^∗=ϵ/9→β(r)=(2−ϵ/3)rβ(u^)=(u^−ϵ/9)(−ϵ) -
d > 4:非物理店(两端远离)
-
d < 4:物理上的相变点
-
临界指数:
r ˉ r 0 ∝ ξ 2 − ϵ / 3 → ξ ∝ r 0 − 1 2 − ϵ / 3 ; ν = 1 2 − ϵ / 3 \frac{\bar r}{r_0} \propto \xi^{2-\epsilon/3} \rightarrow \xi \propto r_0^{-\frac{1}{2-\epsilon/3}}; \nu = \frac{1}{2-\epsilon/3} r0rˉ∝ξ2−ϵ/3→ξ∝r0−2−ϵ/31;ν=2−ϵ/31
4. KT 相图,O(3) 相图
- O(3) - 非线性Sigma model
- XY model - KT 相变