简而言之:\\ 换成 \right.\\
, & 换成 &\left.
来个例子就知道了:
原本的公式是:
\begin{align}\label{up_critic}
L_Q(\theta) & = \mathbb{E}\left[\frac{1}{2}(Q_\theta(\mathcal{S}_{k,t}^m, {A}_{k,t}^m) - ({R}_{k,t}^m \\ \nonumber
&+ \gamma Q_{\bar{\theta}}(\mathcal{S}_{k,t}^{m+1}, {A}_{k,t}^{m+1}) - \log \pi_\phi({A}_{k,t}^{m+1}|\mathcal{S}_{k,t}^{m+1})))^2\right],
\end{align}
将\和第二个&改掉就行了:
\begin{align}\label{up_critic}
L_Q(\theta) & = \mathbb{E}\left[\frac{1}{2}(Q_\theta(\mathcal{S}_{k,t}^m, {A}_{k,t}^m) - ({R}_{k,t}^m \right.\\ \nonumber
&\left.+ \gamma Q_{\bar{\theta}}(\mathcal{S}_{k,t}^{m+1}, {A}_{k,t}^{m+1}) - \log \pi_\phi({A}_{k,t}^{m+1}|\mathcal{S}_{k,t}^{m+1})))^2\right],
\end{align}
结果如下:
若要将公式编号放在第二行则:
\begin{align}\label{up_actor}
L_\pi(\phi) = \mathbb{E}_{\mathcal{S}_{k,t}^m \sim \mathcal{B}}&\left[\mathbb{E}_{{A}_{k,t}^m\sim\pi_\phi}\big[\alpha\log(\pi_\phi({A}_{k,t}^m|\mathcal{S}_{k,t}^m)) \right. \notag \\
&\left.- Q_\theta(\mathcal{S}_{k,t}^m, {A}_{k,t}^m)\big]\right].
\end{align}