第一性原理、分子动力学与机器学习三者的交汇融合已在相关研究领域展现强劲的研究热潮。借助第一性原理计算揭示材料内在的量子特性,并结合分子动力学模拟探究材料在实际环境下的动态行为;运用机器学习算法与上述方法结合,开发高性能预测模型与模拟工具,能有效缩短研发周期,降低计算成本,实现对新型化合物性质的高精度预测。
“第一性原理+分子动力学+机器学习”三位一体的综合手段,已经成为模拟计算的一个前沿方向,为解决传统计算化学方法面临的挑战提供了新的解决方案。国内外已有科研团队在深化第一性原理与分子动力学的研究与应用拓展,利用机器学习优化大规模计算、快速筛选潜在功能材料等方面取得重要突破。尤其是在国家创新驱动发展战略的引领下,越来越多的科研项目聚焦于如何利用人工智能手段解决能源、环保、医药等重大领域的核心问题。这一前沿交叉领域的研究发展趋势呈现出高度集成化、智能化的特点,为我国科技创新注入源源不断的活力。
来自世界ESI排名前50的高校。授课讲师有着丰富的分子动力学与机器学习的使用经验,在《Nature Comunications》、《ACS Applied Materials & Interfaces》 、《Journal of Colloid and Interface Science》 、《Chemistry of Materials》、《Energy Storage Materials》等国际顶级期刊发表论文五十篇。
擅长领域:使用高性能的通用型机器学习模型,深度解析并挖掘材料的结构、热力学和力学等物理属性。
具体安排查