题目链接
动态规划
动态规划思路:
- 确定dp数组以及下标的含义
一天一共就有五个状态,- 没有操作 (其实我们也可以不设置这个状态)
- 第一次持有股票
- 第一次不持有股票
- 第二次持有股票
- 第二次不持有股票
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区。
- 确定递推公式
达到dp[i][1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1])
;同理dp[i][2]也有两个操作:
- 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2] 所以
dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])
同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i])
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i])
-
dp数组如何初始化
- 第0天没有操作,
dp[0][0] = 0;
- 第0天做第一次买入的操作,
dp[0][1] = -prices[0];
- 第0天做第一次卖出的操作,
dp[0][2] = 0;
- 第0天第二次买入操作,
dp[0][3] = -prices[0];
- 第0天第二次卖出初始化,
dp[0][4] = 0;
- 第0天没有操作,
-
确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][5];
// 初始化
dp[0][0] = 0; // 不操作
dp[0][1] = -prices[0]; // 第一次持有股票
dp[0][2] = 0; // 第一次不持有股票
dp[0][3] = -prices[0]; //第二次持有股票
dp[0][4] = 0; //第二次不持有股票
// dp更新寻找最大利润
for(int i = 1; i < prices.length; i++){
for(int j = 0; j <= 5; j++){
dp[i][0] = dp[i - 1][0];
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
}
// 最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出
// 如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4][4]已经包含了dp[4][2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的
return dp[prices.length - 1][4];
}
}