江科大/江协科技 STM32学习笔记P16

news2024/9/21 4:37:30

文章目录

  • 一、PWM驱动LED呼吸灯
    • 1、打通PWM通路
    • 2、PWM.c
      • TIM外设对应的库函数
      • 参考手册AFIO引脚重映射表
    • 3、main.c
  • 二、PWM驱动舵机
    • 1、PWM.c
    • 2、main.c
    • 3、Servo.c
  • 三、PWM驱动直流电机
    • 1、Motor.c
    • 2、PWM.c
    • 3、main.c


一、PWM驱动LED呼吸灯

1、打通PWM通路

在这里插入图片描述
打通PWM通路,第一步,RCC开启时钟,把要用的TIM外设和GPIO外设的时钟打开,第二步,配置时基单元,包括这之前的时钟源选择,第三步,配置输出比较单元,包括CCR的值、输出比较模式、极性选择、输出使能,在库函数里用结构体统一配置,第四步,配置GPIO,把PWM对应的GPIO口,初始化为复用推挽输出的配置,第五步,运行控制,启动计数器

2、PWM.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:PWM初始化
  * 参    数:无
  * 返 回 值:无
  */
void PWM_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟
	
	/*GPIO重映射*/
//	RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);			//开启AFIO的时钟,重映射必须先开启AFIO的时钟
//	GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2, ENABLE);			//将TIM2的引脚部分重映射,具体的映射方案需查看参考手册
//	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);		//将JTAG引脚失能,作为普通GPIO引脚使用
	//如果想让PA15、PB3、PB4三个引脚当做GPIO来使用,加第一句和第三句,先打开AFIO时钟,再用AFIO将JTAG复用解除掉
	//如果想重映射定时器或其他外设的复用引脚,加一二,先打开AFIO时钟,再用AFIO重映射外设复用的引脚,如果重映射的引脚正好是调试端口,一二三都加
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	//复用推挽输出,因为对于普通的开漏/推挽输出,引脚的控制权来源于输出数据寄存器,如果想让定时器控制引脚
	//需要用复用开漏/推挽输出的模式,输出数据寄存器被断开,输出控制权转移给片上外设,这里则连接TIM2的CH1通道
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;		//GPIO_Pin_15;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA0引脚初始化为复用推挽输出	
																	//受外设控制的引脚,均需要配置为复用模式		
	
	/*配置时钟源*/
	TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
	
	/*时基单元初始化*/
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
	TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;					//计数周期,即ARR的值
	TIM_TimeBaseInitStructure.TIM_Prescaler = 720 - 1;				//预分频器,即PSC的值
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
	
	/*输出比较初始化*/
	TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量
	TIM_OCStructInit(&TIM_OCInitStructure);							//结构体初始化,若结构体没有完整赋值
																	//则最好执行此函数,给结构体所有成员都赋一个默认值
																	//避免结构体初值不确定的问题
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;				//输出比较模式,选择PWM模式1
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;		//输出极性,选择为高,若选择极性为低,则输出高低电平取反
	
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;	//输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值
	TIM_OC1Init(TIM2, &TIM_OCInitStructure);						//将结构体变量交给TIM_OC1Init,配置TIM2的输出比较通道1
	//为什么PA0口对应OC1?因为CH1对应TIM2的OC1,PA0对应CH1,同理如果用TIM2的CH2,只能在PA1端口输出,
	//复用时查看引脚定义的默认复用功能和重定义功能,如果有重映射可以挪,配置重映射用AFIO
	
	/*TIM使能*/
	TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}

/**
  * 函    数:PWM设置CCR
  * 参    数:Compare 要写入的CCR的值,范围:0~100
  * 返 回 值:无
  * 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比
  *           占空比Duty = CCR / (ARR + 1)
  */
void PWM_SetCompare1(uint16_t Compare)
{
	TIM_SetCompare1(TIM2, Compare);		//单独设置CCR1的值
}

在这里插入图片描述

计算得出CCR、ARR、PSC的值

TIM外设对应的库函数

void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
//配置输出比较模块,第一个参数选择定时器,第二个结构体是输出比较的参数
void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct);
//用来给输出比较结构体赋一个默认值
void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
//配置强制输出模式,如果在运行中相暂停输出波形并且强制输出高或低电平可以用,因为强制输出高电平和设置100%占空比一样所以用的不多
void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
//配置CCR寄存器的预装功能(写入的值不会立即生效,而是在更新事件时才会生效),一般可以不用
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
//配置快速使能,用得不多
void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear);
//外部事件时清除REF信号,不用掌握
void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
//单独设置输出比较的极性,带N就是高级定时器里互补通道的配置,OC4没有互补通道所以没有OC4N的函数
//这里和结构体初始化的函数里都可以设置极性,作用一样,只不过结构体是一起初始化,这里单独一个函数进行修改
//一般来说,结构体里的参数,都会有个单独的函数可以进行修改
void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx);
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN);
//单独修改输出使能参数
void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode);
//选择输出比较模式,用来单独更改输出比较模式的函数
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1);
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2);
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3);
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4);
//单独更改CCR寄存器值的函数,更改占空比用到这四个函数
void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState);
//仅高级定时器使用,在使用高级定时器输出PWM时,需要调用这个函数使能主输出,否则PWM不能正常输出

参考手册AFIO引脚重映射表

在这里插入图片描述
图中可以看出TIM2部分重映射方式1或者完全重映射都可以把PA0改成PA15,但是下图中PA15没加粗,上电后默认复用为调试端口JTDI,如果想让他作为普通GPIO或者复用定时器的通道,需要先关闭调试端口的复用
在这里插入图片描述

3、main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"

uint8_t i;			//定义for循环的变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	PWM_Init();			//PWM初始化
	
	while (1)
	{
		for (i = 0; i <= 100; i++)
		{
			PWM_SetCompare1(i);			//依次将定时器的CCR寄存器设置为0~100,PWM占空比逐渐增大,LED逐渐变亮
			Delay_ms(10);				//延时10ms
		}
		for (i = 0; i <= 100; i++)
		{
			PWM_SetCompare1(100 - i);	//依次将定时器的CCR寄存器设置为100~0,PWM占空比逐渐减小,LED逐渐变暗
			Delay_ms(10);				//延时10ms
		}
	}
}


二、PWM驱动舵机

1、PWM.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:PWM初始化
  * 参    数:无
  * 返 回 值:无
  */
void PWM_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA1引脚初始化为复用推挽输出	
																	//受外设控制的引脚,均需要配置为复用模式
	
	/*配置时钟源*/
	TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
	
	/*时基单元初始化*/
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
	TIM_TimeBaseInitStructure.TIM_Period = 20000 - 1;				//计数周期,即ARR的值
	TIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1;				//预分频器,即PSC的值
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
	
	/*输出比较初始化*/ 
	TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量
	TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值
	                                                                //则最好执行此函数,给结构体所有成员都赋一个默认值
	                                                                //避免结构体初值不确定的问题
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值
	TIM_OC2Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC2Init,配置TIM2的输出比较通道2
	//同一个定时器不同通道输出PWM的特点
	//对于同一个定时器的不同通道输出的PWM,因为不同通道共用一个计数器,频率一样,占空比由各自CCR决定,
	//相位由于计数器更新,所有PWM同时跳变,相位同步
	
	/*TIM使能*/
	TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}

/**
  * 函    数:PWM设置CCR
  * 参    数:Compare 要写入的CCR的值,范围:0~100
  * 返 回 值:无
  * 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比
  *           占空比Duty = CCR / (ARR + 1)
  */
void PWM_SetCompare2(uint16_t Compare)
{
	TIM_SetCompare2(TIM2, Compare);		//设置CCR2的值
}

2、main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Servo.h"
#include "Key.h"

uint8_t KeyNum;			//定义用于接收键码的变量
float Angle;			//定义角度变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	Servo_Init();		//舵机初始化
	Key_Init();			//按键初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "Angle:");	//1行1列显示字符串Angle:
	
	while (1)
	{
		KeyNum = Key_GetNum();			//获取按键键码
		if (KeyNum == 1)				//按键1按下
		{
			Angle += 30;				//角度变量自增30
			if (Angle > 180)			//角度变量超过180后
			{
				Angle = 0;				//角度变量归零
			}
		}
		Servo_SetAngle(Angle);			//设置舵机的角度为角度变量
		OLED_ShowNum(1, 7, Angle, 3);	//OLED显示角度变量
	}
}

3、Servo.c

#include "stm32f10x.h"                  // Device header
#include "PWM.h"

/**
  * 函    数:舵机初始化
  * 参    数:无
  * 返 回 值:无
  */
void Servo_Init(void)
{
	PWM_Init();									//初始化舵机的底层PWM
}

/**
  * 函    数:舵机设置角度
  * 参    数:Angle 要设置的舵机角度,范围:0~180
  * 返 回 值:无
  */
void Servo_SetAngle(float Angle)
{
	PWM_SetCompare2(Angle / 180 * 2000 + 500);	//设置占空比
												//将角度线性变换,对应到舵机要求的占空比范围上
}

0度对应500,180度对应2500,中间2000,按比例缩放再加500的偏移量,就是角度对应的映射


三、PWM驱动直流电机

1、Motor.c

#include "stm32f10x.h"                  // Device header
#include "PWM.h"

/**
  * 函    数:直流电机初始化
  * 参    数:无
  * 返 回 值:无
  */
void Motor_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);		//开启GPIOA的时钟
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);						//将PA4和PA5引脚初始化为推挽输出	
	
	PWM_Init();													//初始化直流电机的底层PWM
}

/**
  * 函    数:直流电机设置速度
  * 参    数:Speed 要设置的速度,范围:-100~100
  * 返 回 值:无
  */
void Motor_SetSpeed(int8_t Speed)
{
	if (Speed >= 0)							//如果设置正转的速度值
	{
		GPIO_SetBits(GPIOA, GPIO_Pin_4);	//PA4置高电平
		GPIO_ResetBits(GPIOA, GPIO_Pin_5);	//PA5置低电平,设置方向为正转
		PWM_SetCompare3(Speed);				//PWM设置为速度值
	}
	else									//否则,即设置反转的速度值
	{
		GPIO_ResetBits(GPIOA, GPIO_Pin_4);	//PA4置低电平
		GPIO_SetBits(GPIOA, GPIO_Pin_5);	//PA5置高电平,设置方向为反转
		PWM_SetCompare3(-Speed);			//PWM设置为负的速度值,因为此时速度值为负数,而PWM只能给正数
	}
}

2、PWM.c

#include "stm32f10x.h"                  // Device header

/**
  * 函    数:PWM初始化
  * 参    数:无
  * 返 回 值:无
  */
void PWM_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);			//开启TIM2的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);			//开启GPIOA的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);							//将PA2引脚初始化为复用推挽输出	
																	//受外设控制的引脚,均需要配置为复用模式
	
	/*配置时钟源*/
	TIM_InternalClockConfig(TIM2);		//选择TIM2为内部时钟,若不调用此函数,TIM默认也为内部时钟
	
	/*时基单元初始化*/
	TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;				//定义结构体变量
	TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;     //时钟分频,选择不分频,此参数用于配置滤波器时钟,不影响时基单元功能
	TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器模式,选择向上计数
	TIM_TimeBaseInitStructure.TIM_Period = 100 - 1;                 //计数周期,即ARR的值
	TIM_TimeBaseInitStructure.TIM_Prescaler = 36 - 1;               //预分频器,即PSC的值
	TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;            //重复计数器,高级定时器才会用到
	//如果频率太小,电机会发出蜂鸣器的响声,在堵转时很明显,因为电机里也是线圈和磁铁,所以在PWM的驱动下会发出蜂鸣器的声音
	//加大PWM频率,当PWM足够大时超出人儿范围就听不到了,人耳听到声音的频率范围是20Hz-20KHz
	//减小预分频器不影响占空比
	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);             //将结构体变量交给TIM_TimeBaseInit,配置TIM2的时基单元
	
	/*输出比较初始化*/ 
	TIM_OCInitTypeDef TIM_OCInitStructure;							//定义结构体变量
	TIM_OCStructInit(&TIM_OCInitStructure);                         //结构体初始化,若结构体没有完整赋值
	                                                                //则最好执行此函数,给结构体所有成员都赋一个默认值
	                                                                //避免结构体初值不确定的问题
	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;               //输出比较模式,选择PWM模式1
	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;       //输出极性,选择为高,若选择极性为低,则输出高低电平取反
	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   //输出使能
	TIM_OCInitStructure.TIM_Pulse = 0;								//初始的CCR值
	TIM_OC3Init(TIM2, &TIM_OCInitStructure);                        //将结构体变量交给TIM_OC3Init,配置TIM2的输出比较通道3
	
	/*TIM使能*/
	TIM_Cmd(TIM2, ENABLE);			//使能TIM2,定时器开始运行
}

/**
  * 函    数:PWM设置CCR
  * 参    数:Compare 要写入的CCR的值,范围:0~100
  * 返 回 值:无
  * 注意事项:CCR和ARR共同决定占空比,此函数仅设置CCR的值,并不直接是占空比
  *           占空比Duty = CCR / (ARR + 1)
  */
void PWM_SetCompare3(uint16_t Compare)
{
	TIM_SetCompare3(TIM2, Compare);		//设置CCR3的值
}

3、main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Motor.h"
#include "Key.h"

uint8_t KeyNum;		//定义用于接收按键键码的变量
int8_t Speed;		//定义速度变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	Motor_Init();		//直流电机初始化
	Key_Init();			//按键初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "Speed:");		//1行1列显示字符串Speed:
	
	while (1)
	{
		KeyNum = Key_GetNum();				//获取按键键码
		if (KeyNum == 1)					//按键1按下
		{
			Speed += 20;					//速度变量自增20
			if (Speed > 100)				//速度变量超过100后
			{
				Speed = -100;				//速度变量变为-100
											//此操作会让电机旋转方向突然改变,可能会因供电不足而导致单片机复位
											//若出现了此现象,则应避免使用这样的操作
			}
		}
		Motor_SetSpeed(Speed);				//设置直流电机的速度为速度变量
		OLED_ShowSignedNum(1, 7, Speed, 3);	//OLED显示速度变量
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1965958.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Response.Write实现在页面的生命周期中前后台的交互

最近在做一个很大的查询&#xff0c;花时间很多&#xff0c; 用户会以为死掉了&#xff0c;就做了一个前后交互的&#xff0c;用于显示执行进度&#xff0c;在网上找了一下&#xff0c;这个比较合适。 主要是简单&#xff0c;大道至简 改进了一下&#xff1a;效果如下图 代码…

【干货】IP地址有免费的SSL证书嘛?怎么申请

IP地址没有免费的SSL证书&#xff0c;但可以通过一些证书颁发机构&#xff08;CA&#xff09;购买IP地址SSL证书。这类证书允许用户通过IP地址而非域名来建立安全连接&#xff0c;适用于没有域名的内部服务器、专用网络中的设备或其他无法使用域名的服务。 以下是申请IP地址SS…

Python 写文件 \r\n 和 \n

# -*- coding: UTF-8 -*-import timewith open(write_file.txt, a) as f:for i in range(5):# 计算时间戳timestamp time.strftime(%Y-%m-%d %H:%M:%S, time.localtime())# 构造内容contents ftimestamp:{timestamp}, content:{i}# \n# content f{contents}\n# \r\ncontent …

程序在开发电脑上能跑,客户机器上就崩溃,那是你还没意识到是它?

程序开发之谜&#xff1a;为何在开发电脑上一切正常&#xff0c;一到客户机器就崩溃&#xff1f; 1. 引言&#xff1a; 在软件开发的世界里&#xff0c;没有什么比看到自己精心编写的程序在自己的开发环境中完美运行&#xff0c;却在客户机器上突然崩溃更让人抓狂的事情了。这…

专业145+总415+成电电子科技大学858考研信号与系统经验电子信息与通信工程,通信抗干扰,资源与环境,航空航天,物理学院,考研真题,大纲,参考书。

暑期相对比较轻松&#xff0c;回顾一下自己的考&#xff0c;总结一些经验&#xff0c;希望对大家有所借鉴&#xff0c;电子科技大学专业课858信号与系统145&#xff0c;总分415&#xff0c;顺利上岸成电。专业课&#xff1a;858信号与系统 资料选择&#xff1a;真题&#xff0…

深度学习实战笔记7kaggle比赛:图像分类

import collections import math import os import shutil import pandas as pd from mxnet import gluon, init, npx from mxnet.gluon import nn from d2l import mxnet as d2lnpx.set_np() 获取并组织数据集 比赛数据集分为训练集和测试集&#xff0c;其中训练集包含50000…

光大远通学生宿舍智能电表如何安装

光大远通学生智能电表需要遵循一系列步骤&#xff0c;‌确保安全、‌正确地完成安装过程。‌ 首先&#xff0c;‌安装智能电表的前期准备工作包括确认电源断开、‌检查接线图纸、‌准备必要的工具等。‌在接线过程中&#xff0c;‌需要特别注意接地连接、‌电源接线、‌负载连…

【空间向量】

框架 空间代数空间直角坐标系向量的概念向量的运算向量间的关系空间平面与直线空间平面两平面的位置关系空间直线的方程两直线的位置关系直线与平面的位置关系空间曲面与曲线球面柱面旋转曲面二次曲面空间曲面在坐标面上的投影 解读 1【空间两点之间的距离】根号下各个位置差的…

Java:IO(File、RandomAccessFile、字节流和字符流、其他流)

1&#xff0c;操作文件类&#xff08;File&#xff09; 1.1&#xff0c;File类的基本介绍 在整个io包中&#xff0c;唯一与文件本身相关的类就是File类。使用File类可以进行创建或删除文件等常用操作&#xff0c;如果要使用一个File类&#xff0c;则必须向File类的构造方法中传…

数学建模--聚类分析

目录 聚类分析的基本概念 常用的聚类算法 K-Means 层次聚类 DBSCAN 高斯混合模型&#xff08;GMM&#xff09; 常用的数学公式和方法&#xff1a; 应用实例 结论 数学建模中的聚类分析在市场细分中的具体应用案例是什么&#xff1f; 层次聚类算法与K-Means算法在处理…

Kafka 为什么这么快的七大秘诀,涨知识了

我们都知道 Kafka 是基于磁盘进行存储的&#xff0c;但 Kafka 官方又称其具有高性能、高吞吐、低延时的特点&#xff0c;其吞吐量动辄几十上百万。 在座的靓仔和靓女们是不是有点困惑了&#xff0c;一般认为在磁盘上读写数据是会降低性能的&#xff0c;因为寻址会比较消耗时间。…

unity2D游戏开发18导出游戏

点击File|build Settings 设置安装环境后&#xff0c;点击Build 选中文件夹 结果 运行 设置退出操作 在RPGGameManager类中加入代码 private void Update(){if (Input.GetKey(KeyCode.Escape)) { Application.Quit();}}

Android 10.0 framework默认沉浸式导航栏功能实现

1. 前言 在10.0的系统rom定制化开发中,在实现导航栏的某些定制化开发中,在某些产品需要实现沉浸式导航栏,就是需要app 能全屏显示同样也能显示导航栏,接下来就来分析下相关的功能实现 如图: 2.framework默认沉浸式导航栏功能实现的核心类 frameworks\base\core\java\andro…

idea恢复git未提交代码

背景&#xff1a;因拉取代码&#xff0c;本地冲突&#xff0c;误操作回滚了&#xff0c;本地未提交代码丢失。 操作步骤&#xff1a; git --> Uncommitted Changes --> Show Shelf 在下方会弹出一个git对话框&#xff0c;右键选择要恢复的代码&#xff0c;选择Unshelve…

使用ssh进行远程登录android 手机-非root

之前使用termux直接在android手机上面敲命令实在是太累了&#xff0c;android的键盘各种的不好用&#xff0c;就想着使用ssh的远程的方式操作&#xff0c; 后面发现了现在的这个方法&#xff0c;非常的有效&#xff0c;提高了不少的办事效率 可以参照下面的步骤进行操作 打开…

Java:数组方法,引用传递,变量类型,Lambda表达式

1&#xff0c;数组定义及使用 1.1&#xff0c;定义数组 Java语言是典型的静态语言&#xff0c;因此Java数组是静态的&#xff0c;即当数组被初始化之后&#xff0c;该数组所占的内存空间、数组长度都是不可变的。Java程序中的数组必须经过初始化才可使用。所谓初始化&#xff…

基于RAG的企业级代码生成系统:从数据清洗到工程化实现

目录 引言数据收集与清洗数据标准化知识图谱构建RAG系统实现代码生成模型训练工程化实现系统评估与优化结论 1. 引言 在现代软件开发中&#xff0c;利用大型语言模型(LLM)生成代码已成为提高开发效率的重要手段。然而&#xff0c;对于企业来说&#xff0c;如何让这些模型了解…

PHP转Go系列 | Carbon 时间处理工具的使用姿势

大家好&#xff0c;我是码农先森。 在日常的开发过程中经常会遇到对时间的处理&#xff0c;比如将时间戳进行格式化、获取昨天或上周或上个月的时间、基于当前时间进行加减等场景的使用。在 PHP 语言中有一个针对时间处理的原生函数 strtotime&#xff0c;大家都知道这个函数只…

细说MCU的DAC输出含谐波的正弦波形信号的方法

目录 一、参考硬件 二、 建立新工程 三、代码修改 1.用MATLAB生成含谐波的波形数据 2. 修改代码PV 四、查看结果 一、参考硬件 本项目依赖的软件和硬件工程参考本文作者写的文章&#xff1a;细说MCU的DAC1和DAC2各自输出一通道模拟信号的方法-CSDN博客 https://wenchm.b…

苹果AI版iOS首日火爆:聊天秒变高情商,大模型成最强嘴替

苹果公司最近推出了其人工智能技术Apple Intelligence&#xff0c;并在iOS 18.1 Beta版中首次亮相&#xff0c;这标志着苹果正式迈入了AI时代。Apple Intelligence深度集成于iOS、iPadOS和macOS系统中&#xff0c;提供了包括写作润笔、通话摘要、内容总结、图像生成等一系列AI功…